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One polythiophene derivative PT3T and two low band gap copolymers, PBTT-T3T and PBTT, with different ratios of 5,6-dini-     
trobenzothiadiazole as the acceptor unit in the polymer backbone have been synthesized by Pd-catalyzed Stille-coupling polym-
erizations. Thermal stability, X-ray diffraction analyses, UV-vis absorption spectra, photoluminescence spectra and electro-
chemical properties of the copolymers were investigated. The band gap estimated from UV-vis-NIR spectra of the copolymers 
films varied from 1.39 to 1.94 eV. Among these copolymers, the films of PBTT-T3T and PBTT, which contain the 
5,6-dinitrobenzothiadiazole unit, cover a broad wavelength range in the visible and near-infrared region from 400 to 1000 nm 
with the maximal peak absorption around 700 nm, which is exactly matched with the maximum in the photon flux of the sun. 
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1  Introduction 

In the last decade, the design and synthesis of low band gap 
polymers have attracted a great deal of attention due to their 
unique optoelectronic properties and their application in 
organic optoelectronic devices [1–4]. One traditional im-    
portant spectral region for polymer light emitting diodes is 
the near-infrared (NIR) regions where the telecommunica-    
tion frequency windows are located [4–6]. Organic NIR 
photodetectors using low band gap polymers have tremen-    
dous potential in remote control, chemical/biological sens-    
ing, optical communication, and spectroscopic and medical 
instruments [2]. For polymer solar cells, although devices 
have achieved 8.3% confirmed power conversion efficien-    
cies (PCE) [7], the PCE needs to be further improved before 
commercialization. One of the main limiting parameters for 

this is the mismatch of their absorption of the photoactive 
layer to the solar spectrum. To harvest a larger fraction of 
the solar photon flux and enhance the PCE in photovoltaic 
devices, polymers with low band gap that absorb light at the 
NIR and IR regions of the solar spectrum are needed.  

One approach in achieving low band gap conjugated 
polymers is to alternate the conjugated electron donor (D) 
unit and conjugated electron acceptor (A) unit along the 
polymer backbone [8]. By combining an electron donor 
with an electron acceptor unit, a quinoid mesomeric struc-
ture (D–A → D

+=A) over the conjugated main chain is 
formed, and the band gap was reduced significantly. These 
low band gap polymers are promising candidates for NIR 
light-emitting materials [4–6] and organic photovoltaic  
materials [9–11]. Thiophene-based –conjugated polymers 
possess extensive –electron delocalization along the poly-
mer backbone and are well known as good donor materials 
for solar cells. Benzothiadiazole has been widely used as the 
acceptor unit in cooperation with varieties of electron-  
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donating units as low band gap donors in bulk heterojunc-      
tion (BHJ) photovoltaic cells [11–13]. High hole mobility 
and wide sunlight absorption band could be achieved for the 
D–A type benzothiadiazole-containing polymers [14]. This 
category of polymer donors has been extensively studied 
and has shown outstanding photovoltaic performances. The 
band gap can be reduced by lowering the LUMO (lowest 
unoccupied molecular orbital) energy level or/and elevating 
the HOMO level of the D–A alternating conjugated poly-
mers. It is well known that the LUMO energy levels are 
mainly determined by the electron acceptors. The more 
powerful the acceptor, the higher the electron affinity, 
which finally leads to alower LUMO level in the polymers 
[15]. 5,6-Dinitrobenzothiadiazole, which contains nitro 
groups (NO2), is electron-deficient and thus can serve as an 
even stronger electron-withdrawing unit than benzothiadia-
zole, but the copolymers based on this structure are rarely 
studied [16]. 

In this work, we report three copolymers with low band 
gap and broad absorption spectra (Scheme 1) based on 
thiophene functionalized 5,6-dinitrobenzothiadiazole (BTT) 
and oligothiophene (T3T) units. The influence of different 
ratios of BTT units in the polymer backbone on the optical 
properties is also investigated. Film optical absorption 
measurement shows that the onset band gaps of these poly-
mers range from 1.39 to 1.94 eV. 

2  Experimental 

2.1  Materials and reagents  

All reactions and manipulations were carried out under argon 
atmosphere with the use of standard Schlenk techniques. THF 

 

Scheme 1  Chemical structures of the copolymers. 

was distilled from Na/benzophenone under argon atmos-    
phere. All starting materials were purchased from commercial 
suppliers and used without further purification. 4,7-Dibromo- 
5,6-dinitrobenzothiadiazole (1) [17], 2-tributylstannyl-4-octyl- 
thiophene [18], 5,5″-dibromo-3,3″-dioctyl-2,2′:5′,2″-terthio-     
phene (4) [19] and 2,5-bis(trimethylstannyl)thiophene (5) 
[20] were prepared according to the literature procedures. 

2.2  Instruments and measurements 

The 1H NMR spectra were recorded on a Bruker AV400 
Spectrometer. Gel permeation chromatography (GPC) 
analyses were conducted on a Waters 510 system using 
polystyrene as the standard and THF as eluent at a flow rate 
of 1.0 mL min1 at 40 °C. Elemental Analyses were per-    
formed on an Elementar Vario EL Analyzer. Thermal gra-    
vimetric analysis (TGA) and differential scanning calo-    
rimetry (DSC) curves were recorded on a NETZSCH STA 
409PC instrument under purified nitrogen gas flow with a  
5 °C/min heating rate. UV-vis-NIR spectra were obtained 
with a JASCO V-570 spectrophotometer. Fluorescence spec-     
tra were obtained with a FluoroMax-P instrument. X-ray 
diffraction (XRD) experiments were performed on a Rigaku 
D/max-2500 X-ray powder diffractometer with Cu-K ra-    
diation (k = 1.5406 Å) at a generator voltage of 40 kV and a 
current of 100 mA. Small angle X-ray scattering (SAXS) 
(Supporting Information) experiments were performed on a 
Bruker NanoStar SAXS system (Cu K radiation source at 
a voltage of 40 kV and a current of 35 mA). Atomic force 
microscopy (AFM) studies (Supporting Information) were 
performed using a Digital Instruments Dimension 3100 mi-     
croscope in the tapping mode. Cyclic voltammetry (CV) 
experiments were performed with a LK98B II Microcom-     
puter-based Electrochemical Analyzer. All measurements 
were carried out at room temperature with a conventional 
three-electrode configuration employing a glassy carbon 
electrode as the working electrode, a saturated calomel 
electrode (SCE) as the reference electrode, and a Pt wire as 
the counter electrode. CH3CN was distilled from calcium 
hydride under dry nitrogen immediately prior to use. Tetra-     
butylammonium phosphorus hexafluoride (Bu4NPF6, 0.1 M) 
in CH3CN was used as the supporting electrolyte, and the 
scan rate was 50 mV s

1. Polymer films were drop-cast onto the 
glassy-carbon working electrode from chloroform solutions.  

2.3  Synthetic procedures 

4,7-Bis-(4-octylthiophen-2-yl)-5,6-dinitrobenzothiadiazole (2) 

Dichlorobis(triphenylphosphine)-palladium(II) (40 mg, 0.057 
mmol) was added to a solution of 4,7-dibromo-5,6-dinitro-     
benzothiadiazole (1) (0.54 g, 1.41 mmol) and 2-tributyl-      
stannyl-4-octyl-thiophene (1.94 g, 4.00 mmol) in freshly 
distilled THF (50 mL) under argon atmosphere. After re-     
fluxing for 20 h, the solution was cooled to room tempera-    
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ture, poured into water (200 mL) and extracted with CH2Cl2. 
The organic layer was thoroughly washed with water, brine 
and again with water, and then dried over Na2SO4. After 
removal of the solvent, it was chromatographed on silica gel 
using a mixture of dichloromethane and petroleum ether 
(1:10) as eluant to afford compound 2 (0.84 g, 98%) as a red 
solid. 1H NMR (400 MHz, CHCl3): (ppm): 7.32 (s, 2H), 
7.31 (s, 2H), 2.66 (t, J = 7.7 Hz, 4H), 1.65 (m, J = 7.5 Hz, 
4H), 1.28 (m, 20H), 0.88 (t, J = 6.9 Hz, 6H). 13C NMR (100 
MHz, CHCl3): (ppm): 152.15, 144.38, 141.60, 132.16, 
129.21, 126.42, 121.34, 31.87, 30.35, 30.25, 29.40, 29.24, 
22.67, 14.12. MALDI-TOF MS: calcd, 614.21; found, 
614.23. Anal. calcd for C30H38N4O4S3: C, 58.60; H, 6.23; N, 
9.11. Found: C, 58.78; H, 6.29; N, 8.82. 

4,7-Bis-(5-bromo-4-octyl-thiophen-2-yl)-5,6-dinitrobenzothi
adiazole (3) 

N-Bromosuccinimide (1.61 g, 9.04 mmol) was added in 
small portions to a solution of compound 2 (1.99 g, 3.24 
mmol) in chloroform and acetic acid (120 mL, 1/1, v/v) at  
0 °C. After being stirred over night at room temperature, the 
reaction mixture was poured into water (200 mL) and ex-
tracted with CH2Cl2. The organic layer was thoroughly 
washed with water, aqueous sodium bicarbonate, brine and 
again with water, and then dried over Na2SO4. After re-
moval of the solvent it was chromatographed on silica gel 
using a mixture of dichloromethane and petroleum ether 
(1:10) as eluant to afford compound 3 (2.12 g, 85%) as a red 
solid. 1H NMR (400 MHz, CHCl3): (ppm): 7.17 (s, 2H), 
2.61 (t, J = 7.6 Hz, 4H), 1.60 (m, J = 7.2 Hz, 4H), 1.28 (m, 
20H), 0.88 (t, J = 6.6 Hz, 6H). 13C NMR (100 MHz, CHCl3): 
 (ppm) 151.68, 143.40, 141.28, 131.64, 129.05, 120.24, 
116.89, 31.84, 29.52, 29.40, 29.32, 29.20, 29.09, 22.66, 
14.12. MALDI-TOF MS: anal. calcd, 770.03; found, 770.06. 
Anal. calcd for C30H36Br2N4O4S3: C, 46.64; H, 4.70; Br, 
20.68; N, 7.25. Found: C, 46.84; H, 4.80; N, 7.03. 

Polymerization of PT3T  

Freshly distilled THF (50 mL) was added to the mixture of 
compound 4 (210 mg, 0.33 mmol), 2,5-bis(trimethylstannyl) 
thiophene (136 mg, 0.33 mmol) and Pd(PPh3)2Cl2 (23 mg, 
0.03 mmol) under argon atmosphere. After refluxing for 18 h, 
the mixture was concentrated and CH3OH (300 mL) was 
added, and then the black precipitate was collected on a 
membrane filter. The polymer was purified by Soxhlet ex-
traction with MeOH, hexane, and chloroform. The chloro-
form fraction was concentrated and precipitated into metha-
nol to yield the polymer as a dark red solid (64%). GPC 
(THF): Mn = 12300 g mol1. 1H NMR(400 MHz, CDCl3): 
(ppm): 7.08 (br, 3H), 7.02 (br, 3H), 2.77 (br, 4H), 1.68 (br, 
4H), 1.29 (br, 20H), 0.89 (br, 6H). 13C NMR (100 MHz, 
CHCl3): (ppm): 140.55, 135.97, 135.78, 135.12, 134.93, 
134.88, 132.33, 131.70, 129.61, 128.51, 128.12, 126.70, 
125.97, 124.38, 31.97, 30.59, 29.75, 29.69, 29.53, 29.36, 

22.76, 14.19. 

Polymerization of PBTT-T3T  

Freshly distilled THF (60 mL) was added to the mixture of 
compound 3 (160 mg, 0.21 mmol), 2,5-bis(trimethylstannyl) 
thiophene (172 mg, 0.42 mmol), compound 4 (131 mg, 0.21 
mmol) and Pd(PPh3)2Cl2 (14 mg, 0.02 mmol) under argon 
atmosphere. After refluxing for 24 h, the mixture was con-
centrated and CH3OH (300 mL) was added, and then the 
black precipitate was collected on a membrane filter. The 
polymer was purified by Soxhlet extraction with MeOH, 
hexane, and chloroform. The chloroform fraction was con-
centrated and precipitated into methanol to yield the poly-
mer as a black solid (59%). GPC (THF): Mn = 10500 g mol1. 
1H NMR(400 MHz, CDCl3): (ppm): 7.29–7.45 (br, 4H), 
6.97–7.22 (m, 6H), 2.78 (br, 8H), 1.68 (m, 8H), 1.28 (br, 
40H), 0.88 (br, 12H). 

Polymerization of PBTT  

Freshly distilled THF (50 mL) was added to the mixture of 
compound 3 (230 mg, 0.30 mmol), 2,5-bis(trimethylstannyl) 
thiophene (123 mg, 0.30 mmol) and Pd(PPh3)2Cl2 (21 mg, 
0.03 mmol) under argon atmosphere. After refluxing for 13 h, 
the mixture was concentrated and CH3OH (300 mL) was 
added, and then the black precipitate was collected on a 
membrane filter. The polymer was purified by Soxhlet ex-
traction with MeOH, hexane, and chloroform. The chloro-
form fraction was concentrated and precipitated into 
methanol to yield the polymer as a dark voilet solid (67%). 
GPC (THF): Mn = 22400 g mol1. 1H NMR (400 MHz, 
CDCl3):  (ppm): 7.54 (br, 1H), 7.37 (br, 3H), 2.86 (m, 4H), 
1.70 (m, 4H), 1.28 (br, 20H), 0.88 (m, 6H). 13C NMR (100 
MHz, CHCl3): (ppm): 151.93, 141.37, 140.88, 137.30, 
135.88, 134.04, 133.96, 132.17, 131.60, 128.43, 127.67, 
127.45, 124.53, 120.23, 31.88, 30.44, 30.35, 30.26, 29.71, 
29.54, 29.45, 29.41, 29.34, 29.29, 29.26, 29.12, 22.68, 
14.13. 

3  Results and discussion 

3.1  Synthesis and thermal stability 

The synthesis of the monomers and polymers is depicted in 
Scheme 2. The starting materials, 4,7-dibromo-5,6-dini-     
trobenzothiadiazole (1) [17], 2-tributylstannyl-4-octyl- 
thiophene [18], 5,5″-dibromo-3,3″-dioctyl-2,2′:5′,2″-terthio-      
phene (4) [19], and 2,5-bis(trimethylstannyl)thiophene (5) 
[20] were synthesized according to the literature. Reaction 
of compound 1 with 2-tributylstannyl-4-octyl-thiophene 
using Pd-catalyzed Stille coupling reaction gave compound 
2. Compound 2 was brominated with NBS in CHCl3-AcOH 
at 0 °C to give the corresponding brominated derivative 3. 
The polymers were synthesized according to Pd-catalyzed 
Stille coupling, using Pd(PPh3)2Cl2 as the catalyst and THF 
as the solvent. The copolymers were purified by continuous  
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Scheme 2  Synthetic route of the monomers and copolymers.  

extraction with methanol, hexane, and chloroform using 
Soxhlet apparatus. The number-average molecular weights 
(Mn) of the copolymers were determined by using gel per-      
meation chromatography (GPC) with polystyrene standards 
in THF. The molecular weight and yield of the copolymers 
are listed in Table 1. From the 1H NMR spectrum of 
PBTT-T3T (Figure 1), the molar ratio of m and n is esti-    
mated to be 1:1. The synthesized copolymers are readily 
soluble in organic solvents such as chloroform, tetrahydro-     
furan (THF) and chlorobenzene. 

Thermal properties of the three polymers were investi-    
gated by differential scanning calorimetry (DSC) and ther-     
mogravimetric analysis (TGA) (Figure 2). As can be seen in 
Figure 2, no apparent glass transition temperature and melt-     
ing point was observed, suggesting that these copolymers 
tend to form amorphous glass state. The onset decomposi-     
tion temperatures of the polymers at 5% weight loss (T5d) 
are listed in Table 1. PBTT-T3T and PBTT have their T5d at  

Table 1  Molecular weight, 5% weight loss temperature (T5d) and yield of 
the polymers 

Polymer Mn
a) Mw

a) PDI T5d (°C) b) Yield (%) 

PT3T 12300 50700 4.12 432 64 

PBTT-T3T 10500 14600 1.39 214 59 

PBTT 22400 65700 2.93 226 67 

a) Number-average molecular weight determined by GPC using poly-
styrene as the standard in THF solution. b) Decomposition temperature at 
5% weight loss determined by TGA in N2 gas. 

 

Figure 1  1H NMR spectrum of the polymer PBTT-T3T. 

 

Figure 2  TGA and DSC curves of PT3T, PBTT-T3T and PBTT with a 
heating rate of 5 °C min1 under N2.  
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214 and 226 °C, respectively, while PT3T has the highest 
onset decomposition temperature at 432 °C. It is apparent 
that the polymers have good thermal stability for use in or-
ganic optoelectronic device. 

3.2  X-ray diffraction analyses 

To study the crystallinity of these three polymers, X-ray 
diffraction (XRD) was performed. Figure 3 shows the XRD 
patterns of powders of PT3T, PBTT-T3T and PBTT. All 
these three polymers show a broad and weak peak at ~21.2°, 
corresponding to a d-spacing of 4.2 Å. This is believed due 
to the - stacking of the polymer backbone [21]. Since all 
these polymers were based on 3-octylthiophene, the lattice 
distances of these polymers were very close to that observed 
in P3OT (3.8 Å) [22]. It is clear that there is no apparent 
peak in a small angel region for PT3T, and the peak of 
PBTT-T3T is not sharp in this region. While polymer PBTT 
shows a strong and sharp peak around 4.6°, which reveals 
that the distance between PBTT main chains separated by 
alkyl side chains is 19.4 Å [21]. This indicates that PBTT 
has more regular packing at solid state. But overall, the low 
diffraction intensity of the -stacking peaks in combination 
with their broad peaks (between 15° to 35°) suggests that 
these polymers have rather low crystallinity. Small angle 
X-ray scattering (SAXS) (Supporting Information) was also 
performed to study the crystallinity of these polymers, but 
no sharp reflection peak was observed. So, these polymers 
mainly show amorphous structure, which is consistent with 
the DSC results. 

3.3  Absorption properties 

The UV-vis-NIR absorption properties of the copolymers 
based on BTT and T3T units are summarized in Table 2. 
Figure 4(a) shows the UV-vis-NIR absorption in CHCl3 (c = 

0.02 mg mL1). In solution, PT3T has an absorption maxi-    
mum at 470 nm, which is similar with the absorption spec-     
trum of poly(3-hexylthiophene) (P3HT) [23]. For PBTT-  

 

Figure 3  X-ray diffraction patterns of PT3T, PBTT-T3T and PBTT 
powders. Peaks are labeled with d-spacing in angstroms.  

 

Figure 4  UV–vis-NIR spectra of PT3T, PBTT-T3T and PBTT, (a) 0.02 
mg mL1 in CHCl3 and (b) in films.  

T3T and PBTT, the absorption spectra display two distinct 
absorption bands. In the absorption spectrum of PBTT, the 
two absorption peaks are at 374 and 583 nm, respectively. It 
should be noted that PBTT shows a shoulder peak at ~780 
nm, which is a characteristic aggregate absorption [24]. At 
high concentration, PBTT is partly aggregated in solution 
and the aggregate increases with the increasing content of 
the poor solvent when using the mixed solvent (CH3CN and 
CHCl3, Supporting Information). Compared with PBTT, the 
maximum absorption of PBTT-T3T is at 566 nm, and the 
peak at the low wavelength side is red-shifted to 405 nm by 
introducing co-monomer T3T units. The absorption peaks 
of these polymers around 400 nm were attributed to the 
-* transition of the -conjugated segments in the co-
polymer backbone, while the peaks at long wavelength band 
around 570 nm were due to the intramolecular charge 
transfer between the thiophene donor unit and the 
5,6-dinitrobenzothiadiazole acceptor unit [25]. It also can be 
concluded that the absorption at long wavelength intensifies 
with the increasing ratio of the electron-withdrawing unit in 
the copolymer main chain. The optical band gaps of these 
polymers were approximated by extrapolation of the 
low-energy edge of each absorption spectrum [26]. From 
the edge of the absorption spectra (Figure 4(a)), the band 
gap of the three polymers is estimated to be 1.99, 1.79 and 
1.43 eV, respectively. The results show that the optical band 
gaps decrease with increasing units of the acceptor. 
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Thin films of the copolymers were obtained by spin- 
coating of the corresponding CHCl3 solution onto a glass 
substrate. Absorption spectra of the thin films (Figure 4(b)) 
show the similar trends compared to the solution spectra, 
and in general, a broadening and bathochromic shift of the 
bands are visible. This broadening and bathochromic shift is 
strongly induced by the interchain - stacking interactions 
[25]. Compared with solution absorption spectra, the ab-
sorption maxima at the long wavelength of films of PT3T, 
PBTT-T3T and PBTT exhibit a large bathochromic shift, 
which is 49, 132 and 103 nm, respectively. For PBTT-T3T 
and PBTT, the absorption band on the low wavelength side 
also has a bathochromic shift of 43 and 48 nm. As shown in 
Figure 4(b), the copolymer PBTT-T3T, which was obtained 
by introducing co-monomer T3T to the copolymer PBTT, 
has a bathochromic shift of 28 nm for the peak on the low 
wavelength side compared with that of PBTT. This batho-
chromic shift may be attributed to the increasing of in-
tramolecular charge transfer from the T3T units to the BTT 
units, which leads to shifting the absorption spectrum to 
lower energy. Also, as expected, the copolymer PBTT-T3T 
has wider and stronger absorption below 550 nm compared 
with the corresponding mono polymers (PBTT and PT3T), 
showing both the absorption characteristic of these two 
mono polymers. In addition, the optical band gaps of PT3T, 
PBTT-T3T, and PBTT, which were determined from the 
absorption band edges, lowered to 1.94, 1.40 and 1.39 eV, 
respectively. It is noteworthy that the absorption spectra of 
PBTT-T3T and PBTT cover a broad wavelength range in 
the visible and NIR region from 400 nm to 1000 nm with 
the maximal peak absorption around 700 nm, which matches 
with the maximum in the photon flux of the sun [9]. 

3.4  Electrochemical properties 

To investigate the electrochemical properties of these co-
polymers and estimate their band gap, we performed cyclic 
voltammetry (CV) measurements on films of the polymers 
under argon atmosphere. Polymer films were drop-cast onto 
the glassy-carbon working electrode from chloroform solu-
tions. Cyclic voltammetry of all copolymers in anhydrous 
acetonitrile in the presence of Bu4NPF6 as supporting elec-
trolyte at a scan rate of 50 mV s

1 is shown in Figure 5, and 
all the electrochemical data are summarized in Table 3. As 
shown in Figure 5, PT3T displays a partly reversible  

Table 2  Photophysical properties of PT3T, PBTT-T3T and PBTT 

Solution a) Thin film Optical band gap 
Polymer max

abs (nm) 
(max, L g

1
 cm1) 

max
abs 

(nm) 
Solution a) 

(eV) 
Film 
(eV) 

PT3T 470 (39.83) 519 1.99 1.94 

PBTT-T3T 
405 (17.93); 
566 (12.55) 

448; 
698 

1.79 1.40 

PBTT 
374 (14.28); 
583 (15.29) 

422; 
686 

1.43 1.39 

a) Measured in CHCl3 ( = 0.02 mg mL1). 

oxidation process, PBTT-T3T and PBTT display irreversi-
ble oxidation waves and no clear reduction waves were de-
tected for all these copolymers. The HOMO (highest occu-
pied molecular orbital) energy levels of the copolymers 
were calculated using the following empirical equation: 
EHOMO = e(Eo

o
x
nset + 4.4) (eV), where Eo

o
x
nset is the onset oxi-     

dation potential versus standard calomel electrode (SCE). 
Because the onset reduction potentials of PBTT-T3T and 
PBTT were not observed clearly during the reduction 
measurement process, the LUMO energy levels of these 
polymers were calculated from the HOMO levels and opti-
cal band gap (Eg

opt): ELUMO = Eg
opt

 + EHOMO (eV). The onset 
oxidation potential (Eo

o
x
nset) of PT3T, PBTT-T3T and PBTT 

is 0.77, 1.12 and 1.19 eV, respectively. The Eg
opt (1.94 eV), 

HOMO (5.17 eV), and LUMO (3.23 eV) of PT3T are 
almost identical to those of regioregular P3HT (1.9, 5.1, 
and 3.2 eV, respectively) reported in the literature [27], 
since the structure of PT3T is similar to that of P3HT. The 
HOMO level of PBTT is 5.59 eV, which is 0.07 eV lower 
than that of PBTT-T3T. The higher content of strong electron- 
withdrawing effect of 5,6-dinitrobenzothiadiazole in PBTT 
backbone is the main reason for the lower HOMO level of 
PBTT. As we indicated earlier, we did not observe any clear 
reduction peak for polymer PBTT-T3T and PBTT. This 
may attribute to the surrounding effect of thiophenes flock 
[16, 28]. The ELUMO values of PBTT-T3T and PBTT, which 
are determined from the differences between HOMO energy 
levels and optical band gaps, are 4.12 eV for PBTT-T3T 
and 4.20 eV for PBTT, respectively. Here, the LUMO 
energy levels of PBTT-T3T and PBTT are lower than that 

 

Figure 5  Cyclic voltammetry of the films of PT3T, PBTT-T3T and 
PBTT on a glassy carbon electrode in CH3CN with 0.1 M Bu4NPF6 as 
supporting electrolyte and a scan speed of 50 mV s

1.  

Table 3  Redox properties of PT3T, PBTT-T3T and PBTT 

Polymer Eo
o

x
nset (V) HOMO (eV) LUMO (eV) a) 

PT3T 0.77 5.17 3.23 

PBTT-T3T 1.12 5.52 4.12 

PBTT 1.19 5.59 4.20 

a) ELUMO = Eg
opt

 + EHOMO. 
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of PCBM (ELUMO = 3.8 eV) [29], which is widely used as 
the electron acceptor in polymer solar cells. So, PBTT-T3T 
and PBTT might be used as the polymer electron acceptor. 
We have done a preliminary screening for the photovoltaic 
devices using P3HT as the donor and PBTT-T3T or PBTT 
as acceptor, but the power conversion efficiencies were very 
low (~0.01%). We used the atomic force microscopy (AFM) 
to investigate the morphology of the blend film (Supporting 
Information), and no desired phase separation for an effi-
cient OPV active layer was observed. Also, a matching hole 
transport polymer as the donor which could better match 
these polymers may be needed to have high photovoltaic 
performance [30–32]. 

3.5  Photoluminescence characteristics 

Photoluminescence (PL) spectra for the copolymers were 
taken under an excitation of 467 nm in 0.01 mg mL1 chlo-
roform solutions (Figure 6(a)). The emission curves of 
PT3T, PBTT-T3T and PBTT show their emission maxima 
at 572, 559 and 569 nm, respectively. The intensity of the 
PL emission decreases by introducing BTT content into the 
copolymer backbone. The emission peak was mostly quenched 
for PBTT-T3T, especially for PBTT. This result is consis-    
tent with the expected intramolecular charge transfer from 
the thiophene donor to the 5,6-dinitrobenzothiadiazole ac-    
ceptor [33]. 

 

Figure 6  Photoluminescence spectra of PT3T, PBTT-T3T and PBTT: (a) 
0.01 mg mL1 in CHCl3 solutions and (b) solid films (spin-coated from 
ODCB solutions). The inset shows the normalized PL spectra. 

The PL spectra of PT3T, PBTT-T3T and PBTT in solid 
films (spin-coated from dichlorobenzene solutions, 10 mg mL1) 
excited at 524, 447 and 422 nm, respectively, are shown in 
Figure 6(b). Compared with their solution PL spectra, the 
emission maximum of PT3T, located at 619 nm, exhibits a 
large bathochromic shift of 47 nm. The bathochromic shift 
of the PL peak could be attributed to the increase of effec-
tive conjugation length and the interchain interactions of 
PT3T at solid state [34], which is also supported by XRD 
analysis. Interestingly, the PL spectra of copolymers PBTT- 
T3T and PBTT containing BTT moieties in Figure 6(b) 
were completely quenched in solid films. An additional 
reason for the complete PL quenching phenomena of these 
polymers should be the normal intermolecular energy trans-
fer at solid state in the films. 

To get an insight into the charge transfer process in the 
donor/acceptor blends, the PL spectra of P3HT/PBTT-T3T 
and P3HT/PBTT blends along with that of the pure P3HT 
spin-coated films from dichlorobenzene solutions have been 
investigated. As shown in Figure 7, the PL of P3HT film 
locates in the visible-NIR region with an emission maxi-
mum at 724 nm, and is completely quenched after blending 
with the acceptor polymer PBTT-T3T or PBTT. This ob-
servation indicates that an efficient charge/energy transfer 
occurred between the P3HT and the acceptor polymers and 
these two polymers may be used as the electron acceptor in 
OPV devices. 

4  Conclusions 

We have synthesized one polythiophene derivative PT3T 
and two low band gap copolymers based on thiophene func-
tionalized 5,6-dinitrobenzothiadiazole units and oligothio-
phene units by Pd-catalyzed Stille-coupling polymerizations. 
The polymers, PBTT-T3T and PBTT, show a broad absorp-    
tion spectrum from 400 to 1000 nm. With increasing ratio 
of electron-withdrawing unit 5,6-dinitrobenzothiadiazole in 
the polymer backbone, the band gaps of the polymers 

 

Figure 7  Photoluminescence spectra of P3HT/PBTT-T3T, P3HT/PBTT 
blend films with weight ratio of 1:1 and the pure P3HT film upon excitation 
at 553 nm. The films were spin-coated on quartz from dichlorobenzene solution.  
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decrease. Among these three polymers, PBTT shows the 
smallest band gap of 1.39 eV. Complete PL quenching was 
observed when P3HT blended with PBTT-T3T or PBTT, 
indicating efficient charge/energy transfer occurred. The 
low band gap, broad absorption spectra, coupled with their 
good solubility and stability, indicate that PBTT and 
PBTT-T3T could be used in organic optoelectronic devices 
such as polymer solar cells and NIR detectors. But initial 
screening test using PBTT-T3T and PBTT as the electron 
acceptor for OPV devices gives rather poor power conver-
sion efficiencies. Further optimization is currently under-
way for their applications. 
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