
Guankui Long,†,‡ Rui Shi,§,¶ Yecheng Zhou,†,‡ Ailin Li,‖ Bin Kan,† Wei-Ru Wu,∇,○ U-Ser Jeng,† Tao Xu,⊥ Tianying Yan,‖ Mingtao Zhang,† Xuan Yang,‡ Xin Ke,⊥ Litao Sun,§ Angus Gray-Weale,† Xiangian Wan,⊥ Hongtao Zhang,¶ Chenxi Li,† Yanting Wang,*,§,‖ and Yongsheng Chen*,†,♦

†State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, School of Materials Science and Engineering, Nankai University, Tianjin 300071, China
‡CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 55 East Zhongguancun Road, P.O. Box 2735, Beijing 100190, China
¶Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
§Institute of New Energy Material Chemistry, Tianjin Key Laboratory of Metal- and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin 300071, China
‖School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
¶School of Physical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
∇National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30077, Taiwan
○Chemical Engineering Department, National Tsing-Hua University, Hsinchu 30013, Taiwan
♦SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China

Supporting Information

ABSTRACT: Understanding the origin of different morphologies in bulk-heterojunction solar cells can provide effective guidelines to rational control of the morphologies in the active layer. Here, we have uncovered the importance of molecular interactions on the morphologies for not only donor materials but also for fullerene acceptors in organic solar cells through the multiscale coarse-graining molecular dynamic simulations at the real device level (≈83 nm × 83 nm × 83 nm). It is found that oligothiophene donors with polar end groups could not only facilitate the formation of continuous donor network but also promote the aggregation and connection of fullerenes toward efficient hole and electron transport. On the contrary, fullerenes are well dispersed at the molecule levels in the less polar oligothiophene matrix and thus contribute to the poor electron transport mobility and device performance, which is consistent with the observed differences in both morphology and charge transport properties of these two systems. These results would provide effective guidelines for the rational molecule design and morphology control to further enhance the device performance of organic solar cells.

1. INTRODUCTION

Bulk-heterojunction organic solar cells (BHJ-OSCs) composed of electron-donating and electron-accepting materials have received much attention in the past 2 decades owing to their fascinating features, such as low cost, light weight, solution-processability, and high-mechanical flexibility.1 Although the power conversion efficiency (PCE) for BHJ-OSCs has recently been significantly improved to over 11%,2 it does not yet meet the requirement for commercialization. Besides the influence of interlayers3,4 and novel device structures,5,6 materials7–12 and morphologies13–15 in the active layer decisively control the performance of OSCs. Compared with the complex morphologies owning to the mixture nature of electron-donating and accepting materials and other additives,16,17 some effective strategies have been successfully developed and employed to tune the optical and electronic properties of both donor and acceptor materials.18–25 However, due to the lack of detailed understanding at the mesoscopic level, there still has been no efficient strategy to optimize and control the morphology in the active layer, and the only way to achieve optimized morphology...
in the device is still based on the iterative and time-consuming trial-and-error processes. Therefore, understanding the relationship between molecular structures and morphologies is essential for further enhancing the performance of BHJ-OSCs through rational morphology control based on molecular design. Molecular dynamics (MD) simulations were successfully employed to investigate the blended states of donors and acceptors in the active layer, and tremendous progresses were achieved. However, most of the simulated boxes are even smaller than the experimental domain size, and the molecular origin of different morphologies is still unclear. Thus, the large-scale coarse-graining MD simulations at the real device levels are extremely needed for systematically investigating the origin of different morphologies at the molecular level in OSCs.

In our previous studies, it has been found that two very similar donor molecules, DERHD7T and DRCN7T (the chemical structures are shown in Figure 1) behave very differently in their OSC devices with the same acceptor, PC71BM, and DRCN7T performs much better than DERHD7T despite the fact that they have the same backbone structure and substituted groups except a small difference in their end groups. Thus, it is vital to explore and understand why such a small difference in molecular structure could result in so large difference in photovoltaic performances. In this work, by combining MD simulation using the multiscale coarse-grained (MS-CG) model at the real device scale (∼83 nm × 83 nm × 83 nm) with the experimental morphology results, it is found that fullerenes are well dispersed at the molecular level in the less polar matrix of DERHD7T, but aggregate strongly in the more polar DRCN7T:PC71BM system, and thus lead to better and continuous hole and electron-transport channels in the latter system. As a result, the percolation ratio for fullerene phases to the electrodes increases drastically from 0.05% for DERHD7T:PC71BM to 90% for DRCN7T:PC71BM systems, respectively, consistent with the experimental morphologies and mobility observations. Our results reveal the important influence of molecular design on the device performance of BHJ-OSCs, by tuning the morphologies of not only donor materials but also fullerene acceptors.

2. COMPUTATIONAL DETAILS

The CG MD simulations were carried out with the DL_POLY program (version 2.14). The details of the MS-CG models are given in the Supporting Information. The size of the simulation box with the periodic boundary condition (PBC) applied is ca. 83 nm × 83 nm × 83 nm, which is closed to the thickness of the active layer (∼100 nm) in real OSC devices. We note that a large-scale simulation is crucial for this work, because of the formation of large domains in the system. A small simulation box may lead to serious finite size effect (see Figure S1 for more details).

As shown in Figure 1, the fullerene acceptor is coarse-grained as CG site D, the central trithiophene units in oligothiophene donors as CG sites A, the bridged dithiophene units as CG sites B, and end groups as CG sites C. The partial charge of each CG site, denoted in Figure 1, is the sum of the partial charges of all underlying atoms, and the force-field parameters for the bonded interactions at the CG level, listed in Tables S2 and S3, have been obtained by fitting the numerical curves provided by the MS-CG program with appropriate functions.

3. RESULTS AND DISCUSSION

3.1. The Experimental Morphologies. Although the two donor molecules are very similar, their slight difference in the small end groups has a significant influence on the mesoscopic morphologies of their mixtures with PC71BM. As shown by the bright field transmission electron microscopy (BF-TEM) images in Figure 1, parts b and c, the fullerene acceptors are well dispersed in the DERHD7T-rich matrix, while a bicontinuous interpenetrating network with well-expressed fibrillar structures were spread out through the DRCN7T:PC71BM film. By replacing the thio groups with the stronger electron-withdrawing dicyanomethylene (DCM) groups, DRCN7T was expected to have an enhanced polarity and intermolecular interaction than that of DERHD7T, which was confirmed by the density functional theory (DFT)
In ionic liquids with high reliability in our previous studies,56 successfully developed to investigate the degree of aggregations PC 71 BM (sites Table S4, the HOPs for the center-of-masses (COMs) of HOP are described in the Supporting Information. As shown in transport properties, as discussed below.

DRCN7T RDFs for the central trithiophene units of the oligothiophene donors (CG site comparison. The oligothiophene chains were colored with green and fullerenes were colored with blue. The scale bars are 20 nm in parts a–d. The RDFs for the central trithiophene units of the oligothiophene donors (CG site A) in the DERHD7T:PC71BM (e) and DRCN7T:PC71BM (f) blends are also plotted.

Figure 2. Sliced snapshot of the simulated morphologies (83 nm × 83 nm × 4 nm) for the DERHD7T:PC71BM (a) and DRCN7T:PC71BM (b) blended films. The oligothiophene-donor-only snapshot for DERHD7T:PC71BM (c) and DRCN7T:PC71BM (d) blended films are also shown for comparison. The oligothiophene chains were colored with green and fullerenes were colored with blue. The scale bars are 20 nm in parts a–d. The RDFs for the central trithiophene units of the oligothiophene donors (CG site A) in the DERHD7T:PC71BM (e) and DRCN7T:PC71BM (f) blends are also plotted.

calculations,54 at the wB97XD/6-31G* level, demonstrating that the binding energy increases significantly from 75.28 kcal/mol for DERHD7T π-dimers to 78.75 kcal/mol for DRCN7T π-dimers (Figure S2). With this, the MD simulations with the MS-CG models were then performed to investigate the micro-mechanism governing the formation of mesoscopic morphology due to molecular interactions.

3.2. The Simulated Morphologies from Coarse-Graining Molecular Dynamic Simulations. The snapshots of 4 nm-thick slices (83 nm × 83 nm in the other two dimensions) for the two investigated systems have been cut out from the simulated PBC box and are shown in Figure 2. It can be seen that fullerene acceptors are well dispersed at the molecular level in the less polar DERHD7T matrix (Figure 2 parts a and c), while the DRCN7T molecules form continuous networks (Figure 2, parts b and d) with strong fullerene aggregations, which are in generally consistent with the BF-TEM results shown in Figure 1. The resulting continuous charge transport channels for both holes and electrons in the DRCN7T:PC71BM blend would greatly influence the charge transport properties, as discussed below.

The heterogeneity order parameter (HOP),55 which was successfully developed to investigate the degree of aggregations in ionic liquids with high reliability in our previous studies,56 was employed to study the degrees of aggregation of different CG sites in the above two systems. A larger HOP value corresponds to a higher degree of aggregation (see the Supporting Information for more details),55 and details of HOP are described in the Supporting Information. As shown in Table S4, the HOPs for the center-of-masses (COMs) of PC71BM (sites D) are 17.88 and 15.92 in the DRCN7T:PC71BM and DERHD7T:PC71BM blends, respectively. The larger HOP for fullerenes in the DRCN7T:PC71BM system indicates that fullerenes pack more tightly than that in DERHD7T:PC71BM. Consistently, the COMs of the end groups (sites C) in DRCN7T:PC71BM also have a larger HOP value of 16.88 than that of 16.17 for DERHD7T:PC71BM, demonstrating stronger polar attractions between the end groups of DRCN7T molecules, partly attributed to the significantly increased partial charges of the end groups from −0.134e for DERHD7T to −0.230e for DRCN7T, respectively (as shown in Figure 1).

3.3. The Mesoscopic Intermolecular Structure of Oligothiophene Donors and Evidence from the Wide-Angle X-ray Diffractions. The mesoscopic intermolecular structures of both oligothiophene donors and fullerene acceptors were then systematically quantified by the COM radial distribution function (RDF). As shown in Figure 2, parts e and f, both DRCN7T:PC71BM and DERHD7T:PC71BM systems exhibit very sharp and regular RDF peaks between the COMs of the central trithiophene units (sites A), indicating that the oligothiophene donors in both systems exhibit very strong crystalline-like behaviors, consistent with the experimentally observed (100), (200), (300), and (010) diffraction peaks in both systems through two-dimensional-grazing incidence wide-angle X-ray diffractions (2D-GIWAXD).50 On the other hand, the COM RDFs for the end groups (sites C), shown in Figure S3, exhibit much stronger RDF peaks for DRCN7T:PC71BM than DERHD7T:PC71BM, which further manifests the existence of stronger intermolecular interactions between DRCN7T molecules owning to the polar end groups. This also agrees well with the experimental results that the (001) diffraction peak (the orientation along the backbone directions of oligothiophenes) only observed through 2D-GIWAXD in the DRCN7T:PC71BM blends.50,57 Thus, in the blends with the fullerene acceptor, the relatively stronger
existence of highly ordered structures of fullerenes (Figure 3b). BHJ blends with PC71BM (Figure 3, parts e and f). A series of performed on both pure oligothiophene donor molecules in the above sliced simulation snapshots (Figure 3, parts a and b). The COM RDFs for the fullerenes in these two systems have also been calculated and shown in Figure 3, parts c and d. The lower fullerene RDF peaks in DERHD7T:PC71BM (Figure 3c) confirms that fullerenes pack loosely in the blend with DERHD7T. By contrast, five distinctive high RDF peaks ranging from 9 to 13 Å are observed in the DRCN7T:PC71BM blend (Figure 3d), indicating the existence of highly ordered structures of fullerenes (Figure 3b). To experimentally confirm the two different behaviors of fullerenes in these two systems, the two-dimensional-grazing incidence small-angle X-ray scattering (2D-GISAXS) was performed on both pure oligothiophene donor films and their BHJ blends with PC71BM (Figure 3, parts e and f). A series of DERHD7T:PC71BM and DRCN7T:PC71BM samples with different weight ratios varying from 1:0, 1:0.3, 1:0.5 to 1:0.8 were measured under the same conditions. As shown in Figure 3f, the scattering peak for DRCN7T:PC71BM samples is gradually enhanced with increasing PC71BM content. Thus, the broad peak at q of 0.007−0.04 Å⁻¹ in the DRCN7T:PC71BM blend is ascribed to the scattering of aggregated fullerene domains, as reported in literature. By contrast, the 2D-GISAXS pattern for the DERHD7T:PC71BM film does not show any obvious peak and almost retains the same with increasing PC71BM content (Figure 3e), which manifests that fullerenes do not aggregate in the DERHD7T:PC71BM blend.

In order to obtain the theoretical fullerene domain size, we have calculated the structure factors (S(q)) of fullerenes (site D). As shown in Figure S4, the structure factors of fullerenes in both DRCN7T:PC71BM and DERHD7T:PC71BM blends match well with the experimental PXRD of pure PC71BM with q > 0.5 Å⁻¹, which further confirm the reliability of our CG-MD models and simulation procedures. The S(q) of fullerenes in DRCN7T:PC71BM and DERHD7T:PC71BM systems exhibit peaks at 0.68 and 0.44 Å⁻¹, corresponding to intermolecular distances of 9.2 and 14.1 Å, respectively. This indicates that fullerenes are closely packed in DRCN7T:PC71BM, while loosely packed with larger intermolecular distance in DERHD7T:PC71BM. This is also consistent with the different behaviors of RDFs and snapshots of fullerenes in the two blends as discussed above. On the other hand, only the fullerenes in DRCN7T:PC71BM exhibit the domain size S(q) peak at ~0.08 Å⁻¹ (as shown in Figure S4), and thus, the theoretical domain spacing of fullerene aggregates in DRCN7T:PC71BM is 7.85 nm, which agrees well with the actual fullerene domain size of 6.88 ± 0.51 nm deduced from 2D-GISAXS.

3.5. Correlation of the Percolation Ratios of Oligothiophene or Fullerene Phases to Electrodess with Experimental Charge Transport Mobilities and Device Performances. The variation of the morphologies significantly influence the charge transport properties and thus the device performances, so the percolation ratios for both oligothiophene and fullerene phases to the electrodes were calculated to quantify the hole and electron transport properties in the above two different morphologies. Considering that isolated oligothiophene donor (or fullerene) domains can act as the recombination center obstructing the transportation of holes and electrons toward the respected electrodes, a higher
percolation ratio could ensure an expedient charge transport channel and thus better photovoltaic performances.50 Details of the percolation-ratio calculations can be found in the Supporting Information. Unlike fullerene acceptors, the calculations of the percolation ratios for oligothiophene donors are not straightforward since each molecule has five CG sites. We have overcome this difficulty by regarding two oligothiophene molecules as connected if the intermolecular distance between any of their two sites is within the cutoff value of 6.0 Å (refer to the Supporting Information). As shown in Figure 4a, for the donor molecules, the DNCN7T:PC71BM system has a larger percolation ratio (99%) than that of DERHD7T:PC71BM (83%), coincident with the experimental observed enhancement of hole transport mobilities from 1.18 × 10−4 cm2 V−1 s−1 for DERHD7T:PC71BM blends to 5.91 × 10−4 cm2 V−1 s−1 for DNCN7T:PC71BM systems, respectively.50 The percolation ratios for fullerene donors are dramatically different, which are 90% for the DNCN7T:PC71BM system and only 0.05% for the DERHD7T:PC71BM blend by using a cutoff distance of 13 Å (refer to the Supporting Information). This is also consistent with the experimentally observed dramatic increase of electron mobility from 1.04 × 10−5 for DERHD7T:PC71BM to 1.28 × 10−4 cm2 V−1 s−1 for DNCN7T:PC71BM blends, respectively.50 Thus, the unbalanced hole and electron percolations in the DERHD7T:PC71BM system should account for the lower fill factor (FF) of 0.52 and poorer PCE of 4.35%, while the DNCN7T:PC71BM system has an enhanced FF of 0.69 and PCE of 9.30% owing to its balanced hole and electron percolations.50

4. CONCLUSION

The multiscale coarse-graining molecular dynamics simulations at the real device scale (∼83 nm × 83 nm × 83 nm) were employed to systematically investigate the influence of donor intermolecular interactions on the mesoscopic morphologies of BHJ-OSCs, and consistent results with experiments are obtained. It is found that polar electron-donating molecules could facilitate the aggregation and connection of both donors and nonpolar acceptors, resulting in efficient hole and electron transport. By contrast, in less polar donor systems, fullerenes are dispersed due to the relatively weaker donor–donor intermolecular interaction, thus leading to poor electron transport mobility and device performance. Our results indicate that mesoscopic morphologies in the active layer can be directly predicted from molecular structures by employing the multi-scale coarse-graining molecular dynamics simulation methodology, which provides a more efficient alternative method other than the time-consuming experimental try-and-error approach employed currently and thus facilitates the rational molecular design and morphology optimization toward enhanced device performances.

■ ASSOCIATED CONTENT

 Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.6b11824.

Details of simulations and experimental results (PDF)

■ AUTHOR INFORMATION

Corresponding Authors
*E-mail: (Y.W.) wangyt@itp.ac.cn.
*E-mail: (Y.C.) yschen99@nankai.edu.cn.

ORCID
○ Guankui Long: 0000-0002-1826-3736
Yecheng Zhou: 0000-0001-8222-7193
U-Ser Jeng: 0000-0002-2247-5061
Yongsheng Chen: 0000-0003-1448-8177

Author Contributions
‡ These authors contributed equally to this work.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The authors gratefully acknowledge financial support from the MOST (Grants 2014CB643502, 2013CB932804, and 2012CB933401), NSFC (Grants 91433101, 51422304, 51373078, 11274122, and 11421063), NSF of Tianjin City (Grant 13RCCFGX01121) and PCSIRT (IRT1257). We thank Dr. Dongchuang Wu and Dr. Zhou Xu at FEI Company for providing the TEM measurements and the 23A SWAXS Endstation of the National Synchrotron Radiation Research Center in Taiwan for providing beam time. The MS-CG MD simulations were performed on the HPC Cluster of ITP-CAS in Beijing and TianHe-1(A) at the National Supercomputer Center in Tianjin, China.
REFERENCES

(33) Han, G.; Shen, X.; Duan, R.; Geng, H.; Yi, Y. Revealing the Influence of the Solvent Evaporation Rate and Thermal Annealing on the Molecular Packing and Charge Transport of DPP[TB(Fu)]. J. Mater. Chem. C 2016, 4, 4654–4661.
(39) Alexiadis, O.; Mavrantzas, V. G. All-Atom Molecular Dynamics Simulation of Temperature Effects on the Structural, Thermodynamic,