Substituents on the end group subtle tuning the energy levels and absorptions of small-molecule nonfullerene acceptors

Xin Ke, Bin Kan, Xiangjian Wan, Yunchuang Wang, Yamin Zhang, Chenxi Li, Yongsheng Chen

State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China

ARTICLE INFO

Keywords:
- End group
- Small-molecule
- Nonfullerene acceptor
- Organic solar cell

ABSTRACT

Two new small-molecule nonfullerene acceptors containing methyl- and fluorine-substituted 2-(2,3-dihydro-3-oxo-1H-inden-1-ylidene)propanedinitrile (INCN) as end groups, namely, NFBDT-Me and NFBDT-F, were designed, synthesized and applied in organic solar cells. The influence of the methyl and fluorine groups on the absorption ability, energy levels, and photovoltaic performances was fully investigated. Compared to their parent molecule NFBDT, these two nonfullerene acceptors based devices exhibit higher PCEs with values of 11.00% and 10.62%, respectively. For NFBDT-Me, the improvement of PCE is mainly attributed to the higher Jsc, while for NFBDT-F, the increase of Voc promotes the higher PCE. This suggests that appropriate manipulation of the end-group substituents of these non-fullerene acceptors is a promising way to enhance the PCEs of non-fullerene based OSCs.

1. Introduction

Organic solar cells (OSCs) are considered to be one of the green energy alternatives for future renewable energy conversion, because of their advantageous features such as light weight, flexibility and solution-based fabrication [1–3]. Due to the development of new donor materials and device optimization, the fullerene-based OSCs have achieved great success [4–9]. Presently, power conversion efficiencies (PCEs) over 11% have been achieved for OSCs with a bulk hetero junction (BHJ) architecture and fullerene derivatives as acceptors [10–15]. However, it is a great challenge for fullerene-based OSCs to achieve further improvements in photovoltaic performance owing to the disadvantages of fullerene derivatives, such as weak absorption, hardly changed energy levels and high cost synthesis and purification process [16,17]. To address these issues, numerous nonfullerene acceptor materials have been developed rapidly in recent years [11,18–26]. Zhan et al. reported some A-D-A type nonfullerene small-molecule acceptors using indacenothiophene (IDT) or indacenodithieno[3,2-b]thiophene (IDTT) as central building blocks, such as IDIC, ITIC and ITIC-Th [27–29]. Li et al. reported a nonfullerene acceptor m-ITIC with a PCE of 11.77% [24]. IT-4F reported by Hou et al. has a remarkable high PCE, which is over 13% [10]. Just recently, a nonfullerene acceptor based OSC with PCE over 14% have been reported by Ding et al. using near infrared absorption acceptor [30].

In order to obtain high-performance nonfullerene acceptors, many design strategies have been explored [18,31–42]. Among these strategies, changing the substituents on the end group is an effective way to tune the energy levels and absorption, thus affecting their photovoltaic performance [10–12,19,43,44]. The methyl group is a weak electron-donating substituent, which can lift the LUMO levels without causing obvious steric hindrance. For example, Hou and his coworkers reported two nonfullerene acceptors, IT-M and IT-DM, which has one and two methyl substituents on the end group, respectively [11]. Compared with ITIC, the LUMO levels of IT-M and IT-DM are raised with values of 0.04 and 0.09 eV, respectively. Meanwhile, the fluorine has stronger electron-withdrawing ability and facilitates intermolecular interactions through forming F–S and F–H bonds [19]. Fluorination simultaneously down-shifts the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels without causing strong steric hindrance of the resulting molecules [10,19,44–46]. For example, Zhan and his coworkers reported a serials of nonfullerene acceptors based on INIC [19]. The acceptors with fluorine substituents have lower LUMO level and narrower band gaps than that without fluorine substituent, which gives red-shifted absorptions and thus help to improve the Jsc and PCE.

Recently, a nonfullerene acceptor NFBDT, using heptacyclic benzodizindolo[2,3-a:2′,3′-c]cyclopenta[d]thiophene (FBDT) as the core unit was reported and gave a PCE of 10.42% [47,48]. Herein, to investigate the influence of different substituents on the end group and further enhance the photovoltaic performance, we choose methyl and fluorine as the substituents...
on the end group INCN, and designed two new nonfullerene acceptors, namely, NFBDT-Me and NFBDT-F. The chemical structures of NFBDT-Me and NFBDT-F together with some acceptors mentioned above are shown in Scheme 1. The influence of methyl and fluorine on the absorption ability, energy levels, and photovoltaic performances was fully investigated. The results demonstrate that a methyl group could indeed lift the LUMO levels and obtain higher V_{oc} for the devices while fluoride down-shift the LUMO levels and decreases the band gap, which makes the maximum absorption peak red-shift, thus increases the J_{sc}.

With PBDB-T as donor, the devices based on NFBDT-Me and NFBDT-F gave a PCE of 11.00% and 10.62%, respectively. For NFBDT-Me based devices, the improvement of PCE is attributed to the higher V_{oc} and FF, while for NFBDT-F based devices, the improvement is mainly attributed to the increase of J_{sc}.

2. Materials and methods

2.1. Materials

All reactions and manipulations were carried out under an argon atmosphere with the use of standard Schlenk techniques. Compound BDT, INCN-Me and INCN-F were purchased from corporation of Suzhousenior Bio. Compound FBDT were synthesized according to the literature [49]. Other starting materials were purchased from
commercial suppliers and used without further purification unless otherwise noticed.

2.2. Instruments and measurements

The 1H and 13C NMR spectra were recorded on a Bruker AV400 Spectrometer. HRMS data were recorded on Varian 7.0T FT-MS. Fourier Transform infrared spectroscopy (FTIR) was carried out using Bio-rad FTS-6000 FT-IR spectrometer. The thermogravimetric analysis (TGA) was carried out on a NETZSCH STA 449 F5 Jupiter instrument under purified nitrogen gas flow. The heating rate for TGA testing is $10^\circ C$ min$^{-1}$. UV-Vis spectra were obtained with a JASCO V-570 spectrophotometer.

Cyclic voltammetry (CV) experiments were performed with a

![Figure 1](image1.png)

Fig. 1. (a) Thermogravimetric analysis (TGA) plot of NFBDT-Me and NFBDT-F with a heating rate of $10^\circ C$ min$^{-1}$ under N$_2$ atmosphere. (b) Energy levels of the donor and acceptors. (c) Absorption spectra of NFBDT-Me and NFBDT-F in CHCl$_3$ and (d) as film.

![Figure 2](image2.png)

Fig. 2. The optimized geometries of NFBDT-Me and NFBDT-F using DFT calculations (B3LYP/6-31G(d)).
LK2010 electrochemical workstation. All CV measurements were carried out at room temperature with a conventional three-electrode configuration employing a glassy carbon electrode as the working electrode, a saturated calomel electrode (SCE) as the reference electrode, and a Pt wire as the counter electrode. Dichloromethane was distilled from calcium hydride under dry nitrogen immediately prior to use. Tetrabutylammonium phosphorus hexafluoride (Bu$_4$NPF$_6$, 0.1 M) in dry dichloromethane was used as the supporting electrolyte, and the scan rate was 100 mV s$^{-1}$. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels were calculated from the onset oxidation potential and the onset reduction potential, using the equation $E_{\text{HOMO}} = -(4.80 + E_{\text{onset}}^{\text{ox}})$, $E_{\text{LUMO}} = -(4.80 + E_{\text{onset}}^{\text{red}})$.

The geometry structures of NFBDT-Me and NFBDT-F were optimized by using DFT calculations (B3LYP/6-31G*), and the frequency analysis was followed to assure that the optimized structures were stable states. All calculations were carried out using Gaussian 09 [50].

The hole and electron mobility were measured using the space charge limited current (SCLC) method, employing a diode configuration of ITO/PEDOT: PSS/active layer/Au for hole and glass/Al/active layer/Al for electron and fitting the results to a space charge limited form, where SCLC is described by:

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Optical and electrochemical data of NFBDT-Me and NFBDT-F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecules</td>
<td>λ_{max} (nm)</td>
</tr>
<tr>
<td>NFBDT-Me</td>
<td>702</td>
</tr>
<tr>
<td>NFBDT-F</td>
<td>717</td>
</tr>
<tr>
<td>NFBDTa</td>
<td>703</td>
</tr>
</tbody>
</table>

a Data are obtained from Ref. [47].

<table>
<thead>
<tr>
<th>Table 2</th>
<th>The photovoltaic performance of NFBDT-Me and NFBDT-F based devices.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecules</td>
<td>V_{oc} (V)</td>
</tr>
<tr>
<td>NFBDT-Me</td>
<td>0.909</td>
</tr>
<tr>
<td>NFBDT-F</td>
<td>0.793</td>
</tr>
<tr>
<td>NFBDTa</td>
<td>0.872</td>
</tr>
</tbody>
</table>

a Data are obtained from Ref. [47]. b Average PCE values obtained from twenty devices are shown in parentheses.

Fig. 3. (a) Device structure of the OSCs (b) Chemical structures of PDIN and PBDB-T (c) Current density – voltage ($J-V$) curves of the devices based on PBDB-T: Acceptors (d) EQE curves based on the devices.
where J is the current density, L is the film thickness of the active layer, μ is the hole or electron mobility, ε is the relative dielectric constant of the transport medium, ε_0 is the permittivity of free space ($8.85 \times 10^{-12} \text{ F m}^{-1}$), $V (= V_{\text{appl}} - V_{\text{bi}})$ is the internal voltage in the device, where V_{appl} is the applied voltage to the device and V_{bi} is the built-in voltage due to the relative work function difference of the two electrodes.

2.3. Solar cell fabrication and testing

The photovoltaic devices were fabricated with a structure of glass/ITO/PEDOT: PSS/Donor:Acceptor/PDIN/Al. The ITO-coated glass substrates were cleaned by detergent, deionized water, acetone, and isopropanol under ultrasonication for 15 min each and dried by a nitrogen blow. PEDOT: PSS layer was spin-coated (ca. 30 nm thick) onto the cleaned ITO surface. The substrates were then baked at 150 °C for 20 min. Subsequently, the active layer was spin-coated from donor and acceptor in chloroform solution at 1500 rpm for 20 s on the ITO/PEDOT: PSS substrate. The active layers were placed in a glass Petri dish for solvent vapor annealing. Then, PDIN (1.5 mg/mL using CH3OH/ACOH (v: v = 100:0.2%) as mixed solvent) was spin-coated at 3000 rpm for 40 s on the active layer. Finally, a 60 nm Al layer were deposited on the PDIN layer under high vacuum (< 1.5 × 10^{-4} \text{ Pa}). The effective area of each cell was 4 mm².

2.4. Synthesis

2.4.1. Synthesis of compound NFBDT-Me

Under the protection of argon, DCHOFBDT (0.10 g, 0.093 mmol) and INCN-Me (0.077 g, 0.37 mmol) was dissolved in a dry CHCl₃ (50 mL) solution, and then pyridine (0.5 mL) was added to the mixture. After stirring at room temperature for 12 h, the mixture was poured into water and then extracted with CHCl₃ (30 mL × 2), the organic layer was dried over anhydrous Na₂SO₄ for 0.5 h. After removal of solvent, the crude product was purified by silica gel using petroleum ether/CHCl₃ (1:2) as eluent and recrystallized from CHCl₃ and hexane to give NFBDT-Me as a dark blue solid (0.107 g, 79.3% yield). Melting point: 214–217 °C. IR (KBr pellet): ν/cm$^{-1}$ 2924.19, 2854.24, 2216.34, 1694.72, 1593.69, 1561.44, 1484.84, 1416.76, 1383.07, 1348.77, 1311.51, 1274.13, 1256.60, 1185.70, 1171.42, 1145.00, 1127.75, 991.71, 969.85, 878.11, 849.56, 655.24.

1H NMR (400 MHz, CDCl₃): δ 8.83 (s, 2H), 8.53 (d, J = 8.1 Hz, 0.86H), 8.46 (s, 1.14H), 8.01 (s, 2H), 7.78 (d, J = 7.7 Hz, 1.14H), 7.68 (s, 2.86H), 7.53–7.50 (m, 2H), 7.15 (d, J = 8.2 Hz, 8H), 7.11 (d, J = 8.3 Hz, 8H), 2.55 (t, J = 7.7 Hz, 8H), 2.53 (s, 6H), 1.59–1.56 (m, 8H), 1.30–1.25 (m, 24H), 0.87–0.84 (m, 12H). 13C NMR (100 MHz, CDCl₃): δ 188.53, 188.18, 162.76, 160.22, 160.15, 155.81, 155.03, 154.86, 146.71, 146.18, 143.97, 142.63, 140.32, 138.80, 138.76, 137.95, 137.76, 137.56, 137.42, 137.14, 135.37, 134.66, 131.75, 128.94, 128.85, 128.06, 125.63, 123.98, 123.56, 122.18, 122.13, 118.11, 114.88, 114.81, 68.53, 62.78, 35.61, 31.74, 31.65, 31.32, 29.76, 29.17, 26.97, 22.72, 22.65, 22.55, 22.05, 14.16. HR-MS (MALDI): Found: [M+H]$^+$, 1455.5710 molecular formula C₉₆H₈₆N₄O₂S₄ requires [M+H]$^+$, 1455.5712.

2.4.2. Synthesis of compound NFBDT-F

Under the protection of argon, DCHOFBDT (0.10 g, 0.093 mmol) and INCN-F (0.07 g, 0.33 mmol) was dissolved in a dry CHCl₃ (50 mL) solution, and then pyridine (0.5 mL) was added to the mixture. After stirring at room temperature for 12 h, the mixture was poured into water and then extracted with CHCl₃ (30 mL × 2), the organic layer was dried over anhydrous Na₂SO₄ for 0.5 h. After removal of solvent, the crude product was purified by silica gel using petroleum ether/CHCl₃ (1:2) as eluent and recrystallized from CHCl₃ and hexane to give NFBDT-Me as a dark blue solid (0.107 g, 79.3% yield). Melting point: 214–217 °C. IR (KBr pellet): ν/cm$^{-1}$ 2924.19, 2854.24, 2216.34, 1694.72, 1593.69, 1561.44, 1484.84, 1416.76, 1383.07, 1348.77, 1311.51, 1274.13, 1256.60, 1185.70, 1171.42, 1145.00, 1127.75, 991.71, 969.85, 878.11, 849.56, 655.24.

1H NMR (400 MHz, CDCl₃): δ 8.83 (s, 2H), 8.53 (d, J = 8.1 Hz, 0.86H), 8.46 (s, 1.14H), 8.01 (s, 2H), 7.78 (d, J = 7.7 Hz, 8H), 2.55 (t, J = 7.7 Hz, 8H), 2.53 (s, 6H), 1.59–1.56 (m, 8H), 1.30–1.25 (m, 24H), 0.87–0.84 (m, 12H). 13C NMR (100 MHz, CDCl₃): δ 188.53, 188.18, 162.76, 160.22, 160.15, 155.81, 155.03, 154.86, 146.71, 146.18, 143.97, 142.63, 140.32, 138.80, 138.76, 137.95, 137.76, 137.56, 137.42, 137.14, 135.37, 134.66, 131.75, 128.94, 128.85, 128.06, 125.63, 123.98, 123.56, 122.18, 122.13, 118.11, 114.88, 114.81, 68.53, 62.78, 35.61, 31.74, 31.65, 31.32, 29.76, 29.17, 26.97, 22.72, 22.65, 22.55, 22.05, 14.16. HR-MS (MALDI): Found: [M+H]$^+$, 1455.5710 molecular formula C₉₆H₈₆N₄O₂S₄ requires [M+H]$^+$, 1455.5712.
CHCl₃ (1:2) as eluent and recrystallized from CHCl₃ and hexane to give NFBDT-F as a dark blue solid (0.102 g, 75.0% yield). Melting point: 235–239 °C. IR (KBr pellet): ν/cm⁻¹ 2926.63, 2854.98, 2128.06, 1698.22, 1585.48, 1539.26, 1421.11, 1400.85, 1321.27, 1286.83, 1252.76, 1173.18, 1140.44, 1127.96, 988.99, 875.29, 739.75. ¹H NMR (400 MHz, CDCl₃): δ 8.66 (s, 2H), 8.70–8.67 (m, 0.5H), 8.35 (d, J = 9.0 Hz, 1.5H), 8.02 (s, 2H), 7.92–7.89 (m, 1.5H), 7.70 (s, 2H), 7.53–7.55 (m, 0.5H), 7.42–7.38 (m, 2H), 7.17 (d, J = 8.2 Hz, 8H), 7.09 (d, J = 8.2 Hz, 8H), 2.56 (t, J = 7.7 Hz, 8H), 1.59–1.56 (m, 8H), 1.30–1.25 (m, 24H), 0.87–0.84 (m, 12H). ¹³C NMR (100 MHz, CDCl₃): δ 187.05, 165.42, 163.04, 158.79, 156.43, 156.38, 156.09, 144.14, 142.72, 143.71, 142.21, 140.62, 140.57, 138.89, 138.83, 138.49, 138.39, 138.26, 137.24, 133.03, 131.81, 128.98, 128.87, 128.04, 125.87, 125.77, 121.80, 121.57, 121.46, 121.39, 118.31, 114.47, 114.32, 112.96, 69.50, 62.81, 35.61, 31.73, 31.21, 29.76, 29.72, 29.16, 22.76, 22.64, 14.16, 14.10. ¹⁹F NMR (564 MHz, CDCl₃): δ −98.96 (s, 0.75F), −100.28 (s, 0.25F). HR-MS (MALDI): Found: [M + H]+ 1463.5208; molecular formula C₉₄H₈₀F₂N₄O₂S₄ requires [M + H]+ 1463.5210.

2.3. Synthesis and characterization

3.1. Synthesis and characterization

The dihalide DCHOFBDT was prepared by the Vilsmeier-Haack reaction as a white-yellow solid according to our previous work [47]. Both end group INCN-Me and INCN-F have two isomers, which cannot be separated due to their rather similar chemical structures. The mole ratio of the two isomers (5-isomer and 6-isomer) for INCN-F is 1:3 according to the ¹H NMR spectra in the Supporting Information, and 1:2.71 for INCN-Me. The desired product NFBDT-Me was then obtained via Knoevenagel condensation of the compound DCHOFBDT with INCN-Me. NFBDT-F was synthesized by the similar procedure using fluorine substituted INCN. Owing to the isomerism of the two end groups, the two final products are all mixtures comprised of three isomers which cannot be separated at this stage. The two new isomeric mixtures were fully characterized by ¹H and ¹³C NMR, and matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). These two molecules exhibit good solubility in common solvents such as chloroform and chlorobenzene. The thermal stability of these two molecules was investigated using thermogravimetric analysis (TGA) (Fig. 1a). The TGA curves of two compounds show that each of them exhibits excellent thermal stability with decomposition temperatures (T₅₀) over 350 °C.

Theoretical calculation (Fig. 2), based on density functional theory (DFT) at the B3LYP/6-31G (d) level, was performed. Frequency analysis was performed to ensure that the optimized geometries were at stable minima. The optimized geometries were used for the density functional theory (DFT) at the B3LYP/6-31G (d) level, was performed. Frequency analysis was followed to ensure that the optimized geometries were at stable states, and the hexyl groups were replaced by methyl ones for simplification. Due to the different substituted position of the Me or F group at the end group, NFBDT-Me and NFBDT-F each also have 3 isomers, namely 6, 6-isomer, 5, 6-isomer and 5, 5-isomer. All of them were calculated and the structure and energy level are similar (Figs. S1 and S2). The results show that both molecules exhibit good coplanar conformations. Like other nonfullerene acceptors, the electron cloud density of HOMO is mainly localized at the central fused donor core part, while for LUMO, the electron cloud prefers the end groups.

3.2. Optical absorption and electrochemical properties

The UV-Vis absorption spectra of these acceptors in CHCl₃ solution and as thin film are shown in Fig. 1c and d, and the corresponding data are summarized in Table 1. Both of these two acceptors exhibit strong and broad absorption in the region of 550–750 nm. In solutions, compared to the non-substituted molecule NFBDT, NFBDT-Me displays a rather similar absorption, while NFBDT-F displays a red-shift of ~14 nm at maximum absorption peak (J₅₀). The maximum molar extinction coefficients are determined to be 2.05 × 10⁵ and 2.17 × 10⁴ M⁻¹ cm⁻¹, respectively, which are higher than NFBDT (1.9 × 10⁴ M⁻¹ cm⁻¹). In the film, these two new molecules exhibit a clear red-shift compared to their maximum absorption peak in solution, with the J₅₀ at 725 and 743 nm, respectively. The optical band gap (Eₒ) of NFBDT-Me estimated from the onset of their film absorption is 1.58 eV, which is larger than NFBDT, while the optical band gap of NFBDT-F (1.50 eV) is smaller than NFBDT.

The molecular energy levels were measured by electrochemical cyclic voltammetry (CV) under identical conditions to NFBDT. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels are calculated from the onset oxidation and reduction potential, respectively. The HOMO and LUMO energy levels are ~5.40 and ~3.78 eV for NFBDT-Me, and ~5.43 and ~3.88 eV for NFBDT-F, respectively (Fig. 1b). The electrochemical and calculation data are listed in Table 1. The variation trends in the molecular energy levels are consistent with the results acquired from theoretical calculations. We can see that with the introduction of methyl on the end-capping group, the LUMO level up-lifts a little while the HOMO level remains the same. This indicates that a higher Vₑ could be obtained in non-fullerene OSCs. For NFBDT-F, both HOMO and LUMO decrease a little due to the effect of the electron-withdrawing fluorine on the end-capping group.

3.3. Photovoltaic performance

Solution-processed BHJ devices were fabricated using these small molecules as the electron acceptor with a normal device structure of ITO/PEDOT:PSS (poly[(3,4-ethylendioxyphtionaphtalein):polystyrene sulfonate)]/PBDB-T: Acceptor/PDIN (4,6-bis[4-(2,2-dihexyloxy)phenyl]-1,2,5-thiadiazole)/Al. Taking the UV-Vis absorption spectra into consideration, we selected PBDB-T as donor material to fabricate their BHJ devices. The optimal D/A weight ratio is 10:6 for PBDB-T:NFBDT-Me, and 1:1 for PBDB-T:NFBDT-F. OSC devices based on the as-cast PBDB-T:NFBDT-Me films showed PCEs of 8.68%, while after chloroform solvent vapor annealing treatment (SVA), the PCE increased to 11.00%. For PBDB-T:NFBDT-F films, the PCE increased from 8.58% to 10.62% with SVA. Benefiting from the higher LUMO level, the devices based on NFBDT-Me obtained a high Vₑ of 0.909 V. Due to the more red-shifted absorption, the devices based on NFBDT-F had a higher Jₑ of 19.28 mA cm⁻² compared with NFBDT-Me and NFBDT-F. The current-density–voltage (J-V) curves of the OSCs based on PBDB-T:NFBDT-Me/NFBDT-F with the optimal photovoltaic performance are summarized in Fig. 3a, and the corresponding photovoltaic parameters are listed in Table 2.

Their external quantum efficiency (EQE) curves of the best devices were measured as shown in Fig. 3b, where the devices with NFBDT-Me and NFBDT-F exhibit photo-to-current responses from 300 to 800 nm. It is obvious that the device based on NFBDT-F shows much higher EQE than NFBDT-Me at the wavelength from 600 to 800 nm. The NFBDT-F based device has the widest spectral response range of these three acceptors. The EQE of NFBDT-F is higher than that of NFBDT-Me, while the EQE of NFBDT-Me is lower. The calculated Jₑ obtained from the EQE curves are 16.70 and 18.58 mA cm⁻², respectively, which show a good match with the Jₑ values obtained from the J-V curves.

The active layer morphologies were measured by atomic force microscopy (AFM) and transmission electron microscopy (TEM). As shown in the AFM images (Fig. 4a-c), the three SVA-treated blend films of PBDB-T:NFBDT, PBDB-T:NFBDT-Me, PBDB-T:NFBDT-F all showed low root-mean-square roughness with values of 1.44, 1.77 and 2.57 nm, respectively, indicating good film quality. Furthermore, the TEM images (Fig. 4d–f) indicate that all the three films formed evident interpenetrating network, which are consistent with the AFM images and their good device performances. From the AFM images and the TEM images, no obvious phase separation or excessive aggregation can be found for the NFBDT-Me and NFBDT-F based films, which is the same as for NFBDT-F. This kind of morphology is of benefit for the exciton
disociation efficiency and charge transport in the OSC devices.

The mobilities of the optimized devices were measured by the space charge limited current (SCLC) method. The hole and electron mobilities for NFB-DMT-Me based devices are 2.07×10^{-4} and $1.68 \times 10^{-4} \text{cm}^2\text{V}^{-1}\text{s}^{-1}$, respectively. For NFB-DT-F based devices, the hole and electron mobilities are 2.49×10^{-4} and $1.33 \times 10^{-4} \text{cm}^2\text{V}^{-1}\text{s}^{-1}$, respectively. Their hole and electron mobilities are of the same order of magnitudes to those of NFBDT. Each of them exhibited slightly more balanced electron and hole mobilities than PBDT-T:F. NFB-DT-F based devices, and this might have contributed to the higher FF for corresponding devices.

4. Conclusion

We have designed and synthesized two new small-molecule non-fullerene acceptors named NFB-DMT-Me and NFB-DT-F, respectively. These devices based on NFB-DMT-Me exhibited a PCE of 11.00% due to the enhanced V_{oc} of 0.909 V, and the devices based on NFB-DT-F demonstrated a PCE of 10.62% attributed to the increase of J_{sc}. Both of them are improved compared to that of NFBDT (10.42%). The result demonstrated that changing different substitutions on the end-capping group could finely tune the energy levels for better photovoltaic performance. We believe that higher PCE would be achieved through more delicate molecule design and device optimizations.

Acknowledgments

The authors gratefully acknowledge the financial support from MOST (Grant Nos. 2014CB643502) and NSFC (Grant Nos. 51773095, 91633301) of China and Tianjin city (Grant Nos. 17JCQJC44500, 17JCDJC31100), 111 Project (Grant Nos. B12015).

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.dyepig.2018.03.061.

References

