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A B S T R A C T   

Recently, lots of high-performance linear π-conjugated polymer acceptors based on the strategy of polymerizing 
small-molecule acceptors have been developed. However, there very few reports on nonlinear π-conjugated 
polymer acceptors for all-polymer solar cells. Here, we explored and synthesized two nonlinear π-conjugated 
polymer acceptors, named TZ1 or TZ2, respectively. Compared with the nonfluorinated polymer acceptor TZ1, 
the fluorinated polymer acceptor TZ2 presents lower energy level and better molecular aggregation. After 
blending with PM6, the TZ2-based device displayed more efficient exciton dissociation, higher charge carries 
mobilities and less charge recombination, leading to its higher Jsc of 14.94 mA cm− 2. As a result, the TZ2-based 
device achieved a PCE of 7.41%, higher than the TZ1-based device (4.06%). Our results provide a new strategy to 
develop nonlinear π-conjugated polymer acceptors and demonstrate the selection of suitable bridges is of 
importance for the construction of nonlinear π-conjugated polymer acceptors.   

1. Introduction 

All-polymer solar cells (all-PSCs), which employ a π-conjugated 
polymer donor and a π-conjugated polymer acceptor, have attracted 
ever-increasing attention due to their advantages of excellent mechan
ical properties, good thermal stability, photostability and suitable for 
fabricating flexible device [1–5]. Despite the numerous advantages of 
all-PSCs, the power conversion efficiency (PCE) of all-PSCs [6] is still 
lagging behind the small-molecular acceptor based solar cells [7], which 
is mainly due to the limited kinds of high-performance polymer accep
tors [8–13]. In early stage, various polymer acceptors based on naph
thalene diimide [14], perylene diimide [15], diketopyrrolopyrrole [16], 
isoindigo [17], or B←N bridge unit [18] have been explored. However, 
these polymer acceptors typically suffer from narrow absorption band, 
low extinction coefficient and unfavorable phase segregation [19]. As a 
result, most of these related all-PSCs presented moderate PCEs around 
10% [19]. 

In 2017, Li et al. proposed an effective strategy by polymerizing 

small molecule acceptor to solve these issues [20]. The resulting poly
merized small molecule acceptors (PSMAs) not only preserve the ad
vantages of small molecule acceptors (such as strong absorption 
coefficient, good charge transport properties, small energy loss, etc. [19, 
21]), but also preserve the advantages of polymers (such as thermal 
stability and mechanical flexibility) [19]. Inspired by this strategy and 
the emerging high-performance Y6-based SMAs, the PCE of all-PSCs has 
surpassed 17% recently [6,22]. At present, most of reported 
high-performance polymer acceptors are linear π-conjugated polymers. 
Compared with conventional linear π-conjugated polymers, nonlinear 
π-conjugated polymers featured 3D architectures (such as dendritic, 
branched or star-shaped architecture) [23], are intrinsically stretched 
and can contact with other polymers in multiple directions to tune the 
interaction among different polymers [24]. Besides, nonlinear π-conju
gated polymers tend to form globular structures which possess large 
internal space that effectively inhibit the entanglement of adjacent 
polymer chains through its large steric hindrance, consequently leads to 
the enhanced solubility and miscibility with polymers [24–28]. Despite 
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these characteristics, this architecture of polymer has been seldom 
employed as the polymer electron acceptor. 

Herein, we propose a new strategy to synthesize nonlinear π-conju
gated polymer acceptors by copolymerizing a small molecule acceptor 
with three reactive sites and a linkage unit with two reactive sites [24]. 
By using different linkage units, a variety of nonlinear π-conjugated 
polymer acceptors with easily tunable light absorption, energy level and 
aggregation behavior can be developed. Meanwhile, fluorination is 
widely adopted to improve the performance of all-PSCs, benefitting from 
the broaden absorption spectrum, the enhanced molecular aggregation 
and the favorable morphology of active layer [8,22,29,30]. With these in 
mind, the small molecule acceptor with three reactive sites was designed 
and synthesized according to our previous reports [29,31,32]. After 
then, thiophene and 3,4-difluoro thiophene were selected as the linkage 
unit to synthesize nonlinear π-conjugated polymer acceptors TZ1 and 
TZ2, respectively. The differences in their physicochemical and photo
voltaic properties were systematically studied. Compared with TZ1, TZ2 
shows a slightly red-shifted absorption and deeper-lying energy levels as 
well as stronger molecular aggregation. When blended with polymer 
donor PM6, both devices displayed considerable open-circuit voltages 
(Voc) over 0.92 V. All-PSCs based on TZ2 demonstrated a PCE of 7.41%, 
with a short-circuit current density (Jsc) of 14.94 mA cm− 2, and a fill 
factor (FF) of 53.7%. While all-PSCs based on TZ1 suffered a quite low 
Jsc of 7.99 mA cm− 2, leading to its PCE of 4.06%. Our results provide an 
initial example to develop nonlinear π-conjugated polymer acceptors 
and demonstrate the selection of suitable bridges is also essential for the 
construction of nonlinear π-conjugated polymer acceptors. 

2. Results and discussion 

2.1. Materials and characterization 

Molecular structures and synthetic routes of TZ1 and TZ2 are shown 
in Fig. 1, and the synthetic details were provided in the Supporting In
formation. The important intermediate compound 2 was prepared by 
converting compound 1 into a diimine by reduction and oxidation, then 
followed by an in-situ condensation with available 4-bromobenzene-1,2- 
diamine. Then compound 3 was obtained from compound 2 through 

Vilsmeier-Haack reaction. Compound 4 was prepared by Konevenagel 
condensation of compound 3 with terminal group IC-Br. The chemical 
structures of all compounds were confirmed by nuclear magnetic reso
nance (NMR) spectra and mass spectra. Finally, the target polymer ac
ceptors TZ1 and TZ2 were prepared via the typical Stille coupling 
reaction between compound 4 and thiophene unit, or difluoro- 
substituted thiophene unit, respectively. As measured by high temper
ature gel permeation chromatography (HT-GPC), the number-average 
molecular weights and polydispersity were 10.2 kDa/4.1 and 10.5 
kDa/3.9. for TZ1 and TZ2, respectively. Both polymer acceptors show 
good solubility in common solvents, such as chloroform (CF) and chlo
robenzene (CB), which is a prerequisite for fabricating the solution- 
processed devices. 

2.2. Optical properties and energy levels 

The UV–vis absorption spectra of TZ1 and TZ2 in diluted chloroform 
solution and neat film were measured. As shown in Fig. S1 (Supporting 
Information), TZ1 and TZ2 display similar absorption profiles in the 
solution. Compared with TZ1, the maximum absorption peak of TZ2 
shows ~12 nm red-shifted (Table 1), which is caused by the enhanced 
intramolecular charge transfer (ICT) effect by the fluorine atoms [8,22, 
30]. To investigate the aggregation behavior of these two polymer ac
ceptors, variable-temperature UV–vis absorption spectra in chol
robenzene solution were measured in the range of 20–100 ◦C. As shown 
in Fig. 2a and b, TZ1 exhibits absorption range from 550 to 750 nm, and 
TZ2 exhibits more red-shifted absorption range from 600 to 800 nm. 
This result further confirms that the F atom can enhance intramolecular 
charge transfer (ICT) effect. More importantly, the TZ2 solution shows 
more red-shift vironic absorption peak (by 10 nm from 763 nm to 753 

Fig. 1. (a) Molecular Structures of PM6 polymer donor, TZ1 and TZ2 polymer acceptors; (b) Synthetic route of TZ1 and TZ2 polymer acceptors.  

Table 1 
The optical and electrochemical data of TZ1 and TZ2.  

Comp. λmax
sol 

(nm) 
λmax

film 

(nm) 
λedge

film 

(nm) 
Eg

onset 

(eV) 
HOMO 
(eV) 

LUMO 
(eV) 

TZ1 756 797 852 1.46 − 5.56 − 3.72 
TZ2 772 800 856 1.45 − 5.57 − 3.78  
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nm) than that of TZ1 solution (by 5 nm from 680 nm to 675 nm), which 
is an indicative of stronger molecular aggregation property of TZ2 [21]. 
In thin films, the maximum peaks of TZ1 and TZ2 are 797 nm and 800 
nm, respectively. Compared with TZ2, TZ1 shows larger degree of 
red-shift from the solution state to the film state, implying that TZ1 
exhibites quite different π-π stacking intercation and molecular 
aggreation between the solution and film state [33,34]. The absorption 
onsets of TZ1 and TZ2 film are 852 nm and 856 nm, respectively, which 
correspond to their similar optical bandgaps around 1.45 eV. As a result, 
the combination of polymer donor PM6 and these narrow bandgap 
polymer acceptors provides well complementary absorption extended to 
the near-infrared range (Fig. 2c) [21,34,35]. 

The froniter orbital energy levels of both polymer acceptors in films 
were meausred by cyclic voltammetry experiments under the identical 

conditions (Fig. S2). The highest occupied molecular orbital (HOMO) 
and lowest unoccupied moleclar (LUMO) energy levels of TZ1 are esti
mated to be − 5.56 eV and − 3.72 eV, respectively. Due to the electron- 
withdrawing properties of F atom, TZ2 shows slightly down-shifted 
HOMO and LUMO energy levels, which are − 5.57 eV and − 3.78 eV, 
respectively. As illustrated in Fig. 2d, the energy levels of both polymer 
acceptors could match well with those of the polymer donor PM6. All 
above results demonstrate that the introduction of F-atom on the 
π-bridge of nonlinear π-conjugated polymer acceptors can tune their 
optical-electrical properties as well as the molecular aggregations. 

2.3. Photovoltaic performance 

To evaluate the photovoltaic potentials of these nonlinear 

Fig. 2. (a) Variable-temperature UV–vis absorption spectra of TZ1 in chlorobenzene; (b) Variable-temperature UV–vis absorption spectra of TZ2 in chlorobenzene; 
(c) Normalized absorption spectra of PM6, TZ1 and TZ2 in neat film; (d) Energy level diagrams of PM6, TZ1 and TZ2. 

Fig. 3. (a) Device architecture of all-PSCs; (b) J-V curves of the all-PSCs; (c) EQE spectra of all-PSCs; (d) Hole and electron mobilities of PM6:TZ1 and PM6:TZ2 
blends by SCLC measurement. 
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π-conjugated polymer acceptors, all-polymer solar cells were fabricated 
with a conventional device architecture of ITO/PEDOT:PSS/PM6: 
PSMA/PNDIT-F3N/Ag (Fig. 3a), in which PM6 is selected as the elec
tron donor material based on their matched energy levels and comple
mentary absorptions. The concentration of PM6 was settled as 5 mg/mL, 
and the weight ratios of PM6:TZ1 and PM6:TZ2 were optimized to be 
1:1.2. The thickness of both active layers was controlled to be 100 nm. 
The current density-voltage (J-V) curves of PM6:TZ1 and PM6:TZ2 were 
measured under simulated AM1.5G, 100 mW cm− 2. The details of the 
device fabrication and resulted photovoltaic parameters were shown in 
the Supporting Information. 

As shown in Fig. 3b and Table 2, the devices based on PM6:TZ1 
achieved a high Voc of 0.932 V, but suffered an inferior Jsc of 7.99 mA 
cm− 2 and an FF of 54.6%, resulting in a low PCE of 4.06%. Though TZ2- 
based device had a similar Voc of 0.925 V and an FF of 53.2%, the device 
offered an obvisouly higher PCE of 7.41%, which orginates from its 
almost twofold Jsc of 14.74 mA cm− 2 compared with that of TZ1-based 
device. The higher Jsc of TZ2-based device may be attributed to its 
slightly red-shifted absorption, more efficient exciton dissociation effi
ciency, faster charge transport, and less charge recombination as dis
cussed below [36]. The results suggest that the introduction of F atoms 
into the backbone of the nonlinear π-conjugated polymers is an feasible 
method to enhance the performance. 

To verify the realiability of Jsc values of all-PSC devices, external 
quantum efficiency (EQE) of the TZ1 and TZ2 based devices were 
measured and presented in Fig. 3c. Both devices show broad photo
response from 300 to 900 nm. Compared with TZ1-based devices, TZ2- 
based devices display slightly red-shifted photoresponse which are 
consistent with their blend film absorptions. Meanwhile, TZ2-based 
devices show obviously higher EQE response from 300 to 900 nm, 
which agree well with the enhanced Jsc. The integrated Jsc values from 
EQE curves are 7.87 mA cm− 2 and 14.25 mA cm− 2, respectively, which 
are well consistent with the Jsc values derived from their J-V curves. 

2.4. Charge carrier generation, transporting and recombination 

To investigate the effect of the F atoms of the linkage unit on exciton 
dissociation, steady-state photoluminescence (PL) of their blend films 
were measured (Fig. S3 and Fig. S4). The PL quenching efficiency of 
donor was calculated to be 79.6% in PM6:TZ1, and 82.1% in PM6:TZ2, 
respectively. However, the PL quenching efficiency of acceptor was only 
10.3% in PM6:TZ1, and 53.5% in PM6:TZ2, respectively. Overall, the PL 
quenching efficiency of TZ2-based blended film is higher than that of 
TZ1, which indicates that the TZ2-based devices possess more efficient 
exciton dissociation [24]. This may be the reason why the EQE values of 
TZ2 is higher than that of TZ1 in the range of 700–900 nm. Even though 
TZ2 exhibits a higher quenching efficiency, the quenching efficiency of 
the acceptor moiety is lower than that of the donor moiety, suggesting 
the excitons generated in donor dissociate more easily than excitons 
generated in acceptors at the D/A interfaces. As shown in Fig. 2d, the 
LUMO energy offsets between PM6 and TZ1/TZ2 are both larger than 
their corrsponding HOMO energy offsets, which provide stronger 
driving force for separating the exciton generated in donor, supporting 
the above resutls [4,22,34,37]. 

To clarify the influence of F atoms on charge transport properties, 

hole (μh) and electron mobility (μe) of blend films were measured by 
space-charge-limited-current method (Fig. 3d and Fig. S5). The electron 
and hole mobilities of the PM6:TZ1 blended film are 3.13 × 10 − 6 cm2 

V− 1 s− 1 and 7.38 × 10 − 5 cm2 V− 1 s− 1, respectively, which are both 
lower than those of the PM6:TZ2 blended film (μe = 6.16 × 10 − 6 cm2 

V− 1 s− 1, μh = 1.11 × 10 − 4 cm2 V− 1 s− 1). The PM6:TZ2 device not only 
has higher carrier mobility, but also has more balanced hole/electron 
mobility [38]. These results indicate the introduction of F atoms into the 
polymer backbone can improve the carrier mobilities, and thus the 
charge transport properties. While, the highly unbalanced hole/electron 
mobility may be one of the important reasons for their low FFs and PCEs. 

The dependence of Jsc on the light intensity (Plight) was conducted to 
probe the bimolecular recombination behaviors in the devices. The 
relationship between Jsc and Plight could be expressed as a mathematical 
equation [39]: Jsc ∝ Plight

α . By fitting the date of Jsc and Plight (Fig. 4a), the 
α value of TZ2-based device is 0.99, which is larger than that of TZ1 
based device (α = 0.95), indicating that TZ2-based device possesses less 
bimolecular recombination. Besides, the dependence of Voc on light in
tensity (Plight) was meaured. The relationship between Voc and Plight is 
expressed by the equation of Voc ∝ nkT/q In(Plight), where k is the 
Boltzmann constant, T is the Kelvin temperature, and q is the elementary 
charge [40]. When n is close to 1, bimolecuar recombination is domiant 
recombination mechanism. On the contrary, when n is close to 2, the 
main recombination mechanism is trap-assisted recombination. As 
shown in Fig. 4b, the n value of PM6:TZ1 and PM6:TZ2 devices are 1.12 
and 1.26, respectively, indicating that PM6:TZ1 suffers less trap-assisted 
recombination.. Furthermore, transient potocurrent (TPC) and the 
transient photovoltage (TPV) were used to investigate the charge 
extraction and recombination process in both devices. As shown in 
Fig. 4c, the charge extraction times of PM6:TZ1 and PM6:TZ2 devices 
are 0.41 μs and 0.25 μs, respectively, indicating PM6:TZ2 devices has 
faster charge extration process. The charge carrier lifetime calculated 
from the TPV result is 92 μs for the PM6:TZ2 device, longer than 55 μs 
for the PM6:TZ1 device, implying PM6:TZ2 devices possess less carrier 
recombination [41]. All these results support the higher Jsc of PM6:TZ2 
device (see Fig. 3). 

2.5. Morphology analysis 

The morphology of the blend films were charcterized by transmission 
electron microscopy (TEM) and atomic force microscopy (AFM). As 
shown in Fig. 5a and b, in comparison with PM6:TZ1 blend film, the 
PM6:TZ2 blend film shows more distinct fibrous network and forms 
bicontinuous-interpenetrating network of polymer donors and accep
tors, which is beneficial for exciton dissociation, charge transportation, 
and reducing charge recombination [21,42,43]. Besides, compared with 
the PM6:TZ1 blend film with root-mean-square (RMS) roughness of 
2.29 nm, the PM6:TZ2 blend film shows a rougher surface with larger 
RMS roughness of 3.70 nm, which might be caused by the stronger 
molecular aggregation behavior of TZ2. These results suggest that the 
introduction of F atoms into the backbone of nonlinear π-conjugated 
polymer acceptors enhance the aggregation ability and promote the 
phase separation between polymer donor and polymer acceptor. 

3. Conclusions 

In this work, we proposed a new strategy for the synthesis of 
nonlinear π-conjugated polymer acceptors (NLCPAs). By choosing 
different linkage units, two novel nonlinear π-conjugated polymer ma
terials (namely TZ1 and TZ2) with various properties were successfully 
obtained. TZ1 and TZ2 exhibit wide and efficient absorption and suit
able energy levels as the electron acceptors. In comparison with the 
nonfluorinated polymer acceptor TZ1, the fluorinated polymer acceptor 
TZ2 presents lower energy level, strong molecular aggregation and thus 
higher carrier mobilities. After blending with PM6, both polymer 
acceptors-based devices offered Voc over 0.92 V. However, compared 

Table 2 
Summary of photovoltaic parameters of all-PSCs, and the average parameters 
were calculated from 6 independent devices.  

Active 
layer 

Voc (V) Jsc (mA 
cm− 2) 

Jsc
cal (mA 

cm− 2) 
FF (%) PCE (%) 

PM6: 
TZ1 

0.932 (0.935 
± 0.002) 

7.99 (7.77 
± 0.14) 

7.87 54.6 (54.6 
± 0.3) 

4.06 (3.96 
± 0.06) 

PM6: 
TZ2 

0.925 (0.921 
± 0.002) 

14.94 
(14.91 ±
0.11) 

14.25 53.7 (53.3 
± 0.6) 

7.41 (7.33 
± 0.07)  
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with TZ1-based device, the TZ2-based device achieved a better PCE of 
7.41%, which can be attributed to its obviously higher Jsc of 14.94 mA 
cm− 2. Our work points to the importance of fluorination for NLCPAs and 
provides guidelines for the design of efficient NLCPAs. Considering the 
diverse of linkage units and the central cores, the emergence of 
nonlinear π-conjugated polymer acceptors with better performance is 
anticipating. 
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Fig. 4. (a) Jsc vs. light intensity of PM6:TZ1 and PM6:TZ2; (b) Voc vs. light intensity of PM6:TZ1 and PM6:TZ2; (c) TPC and (d) TPV measurements of PM6:TZ1 and 
PM6:TZ2. 

Fig. 5. (a) TEM image of PM6:TZ1; (b) TEM image of PM6:TZ2; (c) AFM height images of PM6:TZ1; (d) AFM height images of PM6:TZ2.  
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