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A B S T R A C T

To enhance efficiencies of organic solar cells (OSCs), it is essential to minimize the energy loss (Eloss) or maximize 
open-circuit voltage (Voc) while ensuring that the short-circuit current density (Jsc) and fill factor (FF) are not 
sacrificed. In this work, we designed two small-molecule acceptors (SMAs), named CHSPh and CHAPh, which 
incorporate fused 2-bromobenzene units symmetrically and asymmetrically within the central unit of the Y-series 
SMAs. The asymmetric π-extending 2-bromobenzene block enhances π–π stacking, thereby facilitating efficient 
charge transport and improving luminous efficiency while minimizing non-radiative recombination. As a result, 
CHAPh demonstrates a significantly reduced non-radiative energy loss (ΔEnr) of 0.180 eV and Eloss of 0.508 eV. 
Consequently, OSCs based on CHAPh achieve a power conversion efficiencies (PCE) of 19.35 %, representing a 
substantial improvement over the 10.06 % PCE of OSCs based on CHSPh. This result provides a promising 
molecular strategy for enhancing the performance of high-efficiency OSCs.

1. Introduction

Organic solar cells (OSCs) have attracted significant attention due to 
their flexibility, lightweight nature, and capability for large-area fabri-
cation [1–4]. Recent advancements in active layer materials, particu-
larly non-fullerene acceptors (NFAs) with an acceptor-donor-acceptor 
(A-D-A) structure, such as ITIC and Y-series, have led to rapid progress in 
OSCs, achieving power conversion efficiencies (PCEs) exceeding 20 % in 
single-junction devices [5–10]. This progress has narrowed the effi-
ciency gap between OSCs and inorganic or perovskite solar cells. 
Currently, OSCs can achieve high short-circuit current densities (Jsc) 
surpassing 28 mA cm− 2, fill factors (FF) over 80 %, and external quan-
tum efficiency (EQE) values approaching 85 %. However, OSCs still 
exhibit relatively lower open-circuit voltages (Voc) compared to inor-
ganic and perovskite counterparts, primarily due to higher energy losses 
(Eloss), typically exceeding 0.53 eV [11–15]. In OSCs, Eloss mainly arises 
from the driving force required for exciton dissociation and nonradiative 
charge recombination. To minimize Eloss, several strategies have been 
proposed: modifying molecular polarizability to reduce exciton binding 

energy, thereby lowering the driving force for exciton dissociation; 
managing energetic disorder through molecular design or optimizing 
morphology to balance charge carrier transport and recombination; and 
reducing nonradiative recombination by decreasing intermolecular in-
teractions induced by electrostatic potentials [16–24]. Furthermore, 
considerable efforts have been directed toward precisely controlling the 
morphology of the active layer to improve Voc, Jsc, and FF. Molecular 
characteristics, such as dipole moment, crystallinity, electrostatic po-
tentials, and compatibility with donor materials, are carefully adjusted 
to establish an optimal morphology with appropriate phase separation 
and a bicontinuous interpenetrating network. Despite these efforts, it 
remains challenging for simultaneously reducing Eloss and optimizing 
morphology to enhance Voc without compromising Jsc and FF [25–31].

In recent years, we and other groups have designed a series of ac-
ceptors using a central core extended conjugation strategy based on Y- 
series acceptors, which offers advantages such as stronger intermolec-
ular interactions, improved carrier transport, and reduced reorganiza-
tion energy[32–35]. Particularly, the configuration of these acceptors 
has proved to favorable to minimize Eloss and enhance the Voc. Recently, 
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we have found that brominating the central unit can improve intermo-
lecular stacking, crystallinity, and the dielectric constant [36]. The de-
vice based on CH21 achieved a PCE of 18.12 %, with a Voc of 0.873 V, Jsc 
of 26.57 mA cm− 2, and a FF of 78.13 %. The OSC based on CH22 further 
reached a PCE of 19.06 %, with a Voc of 0.884 V, a Jsc of 26.74 mA cm− 2, 
and an impressive FF of 80.62 %. This represents one of the highest PCE 
for OSCs based on the Y-series acceptors with central core conjugated 
extension. However, CH21 and CH22 still exhibit relatively large Eloss 
values of 0.525 eV and 0.530 eV, respectively. In this work, in order to 
further minimize Eloss or enhance the Voc, while maintaining excellent 
Jsc and FF, we designed and synthesized two acceptors, CHSPh and 
CHAPh (Fig. 1a) via further π-extending in central units of CH21 and 
CH22. Experimental and computational results demonstrate that sym-
metric or asymmetric conjugation extensions in the central unit signif-
icantly affect the inherent molecular properties, including electrostatic 
potential, donor compatibility, polarity, light-harvesting ability, and 
aggregation behavior. Each of these factors profoundly impacts the 
blend morphology, subsequently affecting photovoltaic performance. 
Compared to PM6:CHSPH, the blend film of PM6:CHAPh demonstrated 
a uniform and appropriately sized fiber network morphology. These 

improvements facilitate charge generation, transport, and collection 
while minimizing Eloss in OSCs. The CHAPh-based binary devices exhibit 
an impressive ΔEnr of 0.180 eV, achieving of the 19.35 % highest PCE, 
with a higher Voc of 0.912 V, Jsc of 26.9 mA cm− 2, and an FF of 79.09 %. 
This study underscores the significance of asymmetric fusion extension 
for SMAs and highlights the pathway towards the development of OSCs 
with low Eloss and high PCE.

2. Results and discussion

2.1. Design and optoelectronic characterization

The chemical structures of CH21, CH22, CHSPh, and CHAPh are 
shown in Fig. 1a. The synthetic routes of the CHSPh and CHAPh are 
depicted in Scheme S1-S5 and characterizations, such as 1H NMR, 13C 
NMR, and high-resolution mass spectrometry (HRMS) results are pro-
vided in the Supporting Information (SI). To assess the thermal stability 
of two SMAs, thermogravimetric analysis (TGA) was performed in a 
nitrogen environment. As shown in Figure S1(SI), CHSPh and CHAPh 
demonstrate good thermal stability with decomposition temperature 

Fig. 1. a) Molecular structures of CH21, CH22, CHSPh, and CHAPh. b) Electrostatic surface potential (ESP) maps for CHSPh and CHAPh. c) Local dipole moment of 
two SMAs. d) Normalized UV–vis absorption spectra of the two SMAs in chloroform and film, with polymer donor PM6 in films. e) UV–vis absorption and pho-
toluminescence (PL) spectra of two SMAs in the films. f) Energy level diagram of the PM6 and two SMAs.
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(Td) of 338℃ and 332℃, respectively.
To investigate the molecular structure characteristics, we employed 

density functional theory (DFT) calculations to analysis the optimized 
single-molecule geometry and local dipole moment of the two SMAs. 
Based on the optimized geometries in Figure S2(SI), the two acceptors 
exhibit similar N–C–C–N dihedral angles of 8.39◦ and 8.40◦ at the cen-
tral unit, respectively, suggesting good molecular planarity for CHSPh 
and CHAPh. Additionally, DFT calculations were used to analyze the 
electrostatic surface potential (ESP) diagrams for the two acceptors 
depicted in Fig. 1c. The fused 2-bromobenzene within the central shows 
a more negative electrostatic surface potential, and the dipole moment 
of the central unit increases from CHAPh to CHSPh (Fig. 1d). However, 
the direction of the molecular dipole moments for CHSPh and CHAPh 
differ significantly, which suggests that the fused 2-bromobenzene in the 
central unit significantly modifies intermolecular interactions and af-
fects both acceptors packing and surface energy. In practice, CHSPh and 
CHAPh exhibit distinct stacking mode within the films, which will be 
further discussed in the morphology section.

The UV–visible absorption spectra of two SMAs are shown in Fig. 1e. 
In dilute chloroform solution, the fused 2-bromobenzene block reduces 
the electron-donating ability of the central unit, resulting in a slight blue 
shift (~4 nm) in the absorption spectrum of CHSPh compared to CHAPh, 
which exhibits λmax values of 741 nm and 745 nm, respectively. In films, 
CHSPh and CHAPh show red shifts of 61 nm and 64 nm, with λmax values 
of 802 nm and 809 nm. The absorption spectra of D/A blend films 
(Figure S3, SI) reveals that two SMAs have broad absorption in the 300 – 
900 nm. Notably, the acceptor absorption peak in the PM6:CHSPh blend 
is significantly weaker than that of the donor, primarily attributed to the 
irregular arrangement of CHSPh in the film, reduced intermolecular 
interactions and energy transfer efficiency lead to a decrease in the light 
absorption capability of the CHSPh. The Stokes shift (Δλstokes) for CHSPh 
and CHAPh is 104 nm and 65 nm, respectively (Fig. 1f). Therefore, the 
smaller Δλstokes in CHAPh suggests enhanced exciton diffusion and 
reduced non-radiative recombination, both of which are advantageous 
for minimizing ΔEnr in OSCs. The energy levels of CHSPh and CHAPh 
were determined via electrochemical cyclic voltammetry (CV). The CV 
curves (Figure S4, SI) show the LUMO and HOMO energy levels of the 
two acceptors, as illustrated in Fig. 1g. Specifically, the LUMO/HOMO 
values of CHSPh is − 3.86/− 5.69 eV, and the LUMO/HOMO values of 
CHAPh is − 3.84/− 5.66 eV. The increase of the electron-withdrawing 2- 
bromophenyl block into the central until results in a slight decrease in 
both the LUMO and HOMO. Comparted to CHSPh, the electron density 
increase in the CHAPh central unit reduces the intramolecular charge 
transfer (ICT) effect, The upshift LUMO energy level is beneficial for 
improving the Voc of the OSCs. This trend is consistent with the DFT 
calculations, which predict the LUMO/HOMO values of CHSPh is 
− 3.58/− 5.63 eV and for CHAPh is − 3.54/− 5.57 eV (Figure S5, SI).

2.2. Photovoltaic performance

OSC devices with a structure of ITO/2PACz/PM6:acceptor/PNDIT- 
F3N/Ag were fabricated[37]. The fabrication methods of the OSCs are 
presented in SI and the related results are summarized in Table 1. The 
corresponding J–V and EQE curves of the optimal devices are shown in 

Fig. 2a-b. A comparison of the related photovoltaic parameters for the 
binary OSCs can be seen in Fig. 2c. The OSCs based on PM6:CHSPh 
exhibit a low PCE of 10.06 % with a Jsc of 17.89 mA cm− 2, an FF of 
63.64 %, and a low Voc of 0.884 V. In contrast, OSCs based on PM6: 
CHAPh exhibit superior photovoltaic performance with a PCE of 
19.35 %, significantly improved Jsc of 26.91 mA cm− 2, an FF of 
79.03 %, and a high Voc of 0.912 V. Moreover, the Jsc values integrated 
from the EQE curves closely match the Jsc values acquired from the J–V 
tests. The CHAPh-based OSCs exhibited broad and strong photoelectric 
responses from 350 to 850 nm, with the EQE edge surpassing 900 nm 
and intensity approaching 85 % within the 480–660 nm segment, indi-
cating efficient charge generation across this spectrum, resulting in the 
desired Jsc of 26.91 mA cm− 2.

2.3. Energy loss analysis

The devices based on PM6:CHAPh exhibit a significantly higher Voc 
of 0.912 V comparted to the PM6:CHSPh of 0.884 V. Given that the 
ELUMO values of CHSPh and CHAPh are very close, the substantial dif-
ference in Voc between may be attributed to differences in Eloss. We have 
conducted the Eloss analysis and the detailed results are listed in Table 2. 
According to the Shockley-Queisser (SQ) theory, the Eloss in OSCs can be 
divided into three parts, Eloss = qΔVoc = Eg− qVoc = ΔE1 + ΔE2 + ΔE3, 
where Eg is the bandgap energy, q is the charge of an electron [38]. The 
Eloss is attributed to three distinct contributions: ΔE1, ΔE2, and ΔE3. ΔE1 
represents the portion of photon energy above the material’s absorption 
threshold that cannot be utilized. The optical absorption properties of 
the material determine the energy range and efficiency of the absorbed 
photons [39]. Since the absorption spectra of CHSPh and CHAPh are 
similar, their ΔE1 values are also close, measured at 0.264 eV and 
0.265 eV, respectively. ΔE2 (or ΔEr) primarily arises during the charge 
separation process due to the energy level mismatch at the 
donor-acceptor interface, where electron and hole transfer must over-
come the energy level difference [40]. Additionally, charge recombi-
nation at the interface may occur, leading to the release of the absorbed 
photon energy. The energy level structure of the acceptor material de-
termines the interface energy level difference, and poor level alignment 
results in an increased ΔE2. Since CHSPh and CHAPh have similar 
ELUMO, they exhibit nearly identical ΔE2 values of 0.066 eV and 
0.063 eV, respectively.

ΔE3 (or ΔEnr) represents non-radiative recombination and is calcu-
lated ΔEnr = q(Vrad

oc − Voc) or qΔEnr = -kTln(EQEEL), where Vrad
oc is the 

Voc when there is only radiative recombination and EQEEL refers to the 
radiative quantum efficiency of the device under dark charge carrier 
injection [41]. ΔEnr primarily occurs during the charge transport pro-
cess, where defects form trap states in the active layer that capture 
charges, leading to a decrease in charge transport efficiency. Addition-
ally, scattering of charges by phonons and molecular vibrations in-
creases the path length and time of charge transport, thereby raising the 
probability of recombination. Recent studies indicate that improving the 
photoluminescence quantum yield (PLQY) of acceptor materials plays a 
key role in reducing ΔEnr [42]. Since CHSPh has a PLQY of 4.54 %, 
significantly lower than CHAPh’s 6.79 % (Figure S6, SI), the blend of 
PM6:CHSPh exhibits a lower EQEEL value (4.5 × 10⁻⁴), while the blend 
of PM6:CHAPh shows an EQEEL value of 6.2 × 10⁻⁴ (Fig. 2e). As a result, 
the blend of PM6:CHAPh shows a significantly reduced non-radiative 
recombination, with a ΔEnr value of only 0.180 eV. In contrast, the 
blend of PM6:CHSPh has a relatively higher ΔEnr value of 0.196 eV. 
Benefiting from the significantly reduced ΔEnr, the Eₗₒₛₛ in devices based 
on CHAPh is reduced to 0.508 eV, while for PM6:CHSPh, it is 0.526 eV. 
A comprehensive analysis of the Eₗₒₛₛ for two acceptor indicates that 
asymmetric fused extension in the central unit of the acceptor material 
can effectively reduce ΔEnr.

Table 1 
Photovoltaic parameters of the optimized binary devices.

Devices Voc 

[V]
Jsc [mA 
cm− 2]

FF 
[%]

Jsc,cal
a ) [mA 

cm− 2]
PCE [%]b)

CHSPh 0.884 17.89 63.64 15.52 10.06 (9.80 
± 0.62)

CHAPh 0.912 26.91 79.03 26.08 19.35 (19.23 
± 0.11)

a)Current densities are calculated from EQE curves; b) Statistical and optimal 
results are listed in parentheses and outside parentheses, respectively. The 
average parameters were computed from 8 independent devices.
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2.4. Morphology analysis

In addition to the rational design of molecular structures, achieving 
an optimal phase morphology characterized by a moderate phase sep-
aration is crucial for the fabrication of high-efficiency OSCs. Atomic 
force microscopy (AFM) and grazing-incidence wide-angle X-ray scat-
tering (GIWAXS) measurements were conducted to analyze the surface 
(Fig. 3a-f) and bulk morphologies (Fig. 3g-k) of photoactive layers based 
on CHSPh and CHAPh [43]. As illustrated in Fig. 3a, the blend films of 
PM6:CHSPh exhibit a relatively rough surface morphology, with a 
root-mean-square (RMS) roughness of 0.92 nm. In contrast, the RMS 
roughness for the PM6:CHAPh blend film is 0.76 nm (Fig. 3d). The good 
crystallinity of CHAPh facilitates the formation of more uniform and 
appropriately sized acceptor domains (Fig. 3e), providing sufficient 
interfacial area for efficient exciton dissociation. This inhabits the 
excessive enlargement of the acceptor domains, which could otherwise 
increase the electron transport distance or enhance recombination. In 
contrast, the poor crystallinity of CHSPh leads to incomplete phase 
separation, resulting in larger disordered regions and areas of excessive 
crystallization (Fig. 3d), which hinder the effective transport of elec-
trons, thereby reducing device efficiency. Additionally, the AFM phase 
images (Figure S7, SI) illustrate well-defined interpenetrating micro-
structures of nanofibers in the PM6:CHAPh blended films, which create 

efficient bi-continuous pathways for the transport of holes and electrons.
The arrangement of donor and acceptor materials in a face-on 

configuration, which showcases strong π–π stacking, is essential for 
efficient carrier transport. In the 2D-GIWAXS images of the neat CHSPh 
film (Fig. 3g), the presence of bright diffraction rings with comparable 
intensity across random directions indicates the formation of a strongly 
aggregated mixed orientation architecture, where molecules are 
randomly oriented in multiple directions. This observation suggests 
substantial intermolecular π-π stacking interactions, likely originating 
from the rigid planar structure of the conjugated backbone [44]. 
Meanwhile, no clear diffraction peaks were observed in the out-of-plane 
(OOP) direction for the PM6:CHSPh blend film, indicating the absence of 
long-range ordered structures parallel to the substrate. In contrast, the 
CHAPh and PM6:CHAPh films exhibited clear diffraction halos in the qz 
direction, indicating more ordered molecular arrangements, which are 
beneficial for vertical electron and hole transport. Tangential profile 
analysis of the OOP direction revealed that the d-spacing values for 
CHAPh and PM6:CHAPh films were 3.65/3.70 Å, with crystal coherence 
lengths (CCL) of 20.2/25.7 Å, respectively, demonstrating better mo-
lecular order. In the in-plane (IP) direction, PM6:CHSPh blend films 
exhibited the highest CCL of 77.46 Å and 122.93 Å, significantly higher 
than those of CHAPh and PM6:CHAPh blend films (21.42 Å and 
77.46 Å). 2D GIWAXS results reveal that the symmetry and asymmetry 

Fig. 2. a, b) J-V and EQE curve for the optimized devices. c) Parameter comparison for the binary OSCs. d, e) Eloss diagram and EQEEL spectra for the optimized 
devices. f) ΔEnr vs PCE (over 15 %) for binary OSCs with SMAs.

Table 2 
Total energy loss values and different contributions in solar cells based on the SQ limit theory.

Active later Voc [V] Eg 
a)[eV]

VSQ
OC

b)[V] Vrad
OC

c)[V] ΔE1
d)[eV] ΔEr [eV] ΔEnr

e )[eV] ΔEnr 
f)[eV]

Eloss
g )[eV]

PM6:CHSPh 0.884 1.41 1.146 1.080 0.264 0.066 0.196 0.199 0.526
PM6:CHAPh 0.912 1.42 1.155 1.092 0.265 0.063 0.180 0.191 0.508

a)Eg was estimated via the crossing points between normalized absorption and PL spectra of films; b) VSQ
OC is calculated according to the SQ limit; c) Vrad

oc is the Voc 

when there is only radiative recombination and are calculated from sEQE measurements. d) ΔE1 = Eg – VSQ
OC; e) ΔEnr obtained from the equation ΔEnr = q(Vrad

OC – Voc). f) 

ΔEnr obtained from the equation qΔEnr = -kTln(EQEEL) by measuring the device EQEEL. g) Eloss = Eg – Voc.
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fused 2-bromophenyl in central unit of two acceptor have a significant 
impact on molecular packing, crystallization behavior, and aggregation 
states, which ultimately influence the performance of photovoltaic 
devices.

We calculated the surface energy (SE) and the Flory–Huggins inter-
action parameter (χ) for donor and acceptor from the contact angle (CA) 
test (Figure S8 and Table S6, SI). The SE values for PM6, CHSPh, and 
CHAPh were determined to be 31.28, 29.46, and 37.12 mN m− 1, 
respectively. A closer SE indicates improved miscibility between the 
donor and acceptor materials. By employing the empirical formula χD:A 
= K(

̅̅̅̅̅̅
γD

√
−

̅̅̅̅̅̅
γA

√
)2, where K represents a constant and γD/γA signifies the 

SE of the donor and acceptor, we calculated the interaction parameters χ 
for the blend films of PM6-CHSPh and PM6-CHAPh to be 0.25 K and 
0.03 K, respectively. The decrease of χ in the blend film indicates an 
improvement in the miscibility between the donor and acceptor, 
attributed to the decrease fused 2-bromobenzene in the central. This 
enhancement may result from an increase in crystallinity, which ex-
pands the interaction region, as demonstrated by AFM observations of 
the blend film. To analyze the results from AFM, 2D-GIWAX, and CA, it is 
evident that the symmetric and asymmetric fused 2-bromophenyl blocks 
in the central unit significantly influences the aggregation behavior of 
SMAs. The PM6:CHAPh blend exhibits the optimal phase separation, 

Fig. 3. a-f) AFM height, IR images and fibril diameter of blend films; g-I) 2D GIWAX images, IP and OOP line-cut profiles of two acceptors neat and blend film.
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leading to superior Jsc and FF compared to the PM6:CHSPh blend.

2.5. Exciton and charge dynamics analysis

Beyond film morphology, investigating the dynamics of excitons and 
charge can enhance our understanding of both exciton generation and 
charge transport processes within the active layer. The acceptor mole-
cules in the blend film were selectively excited at a wavelength of 
760 nm, and the photoluminescence quenching efficiency (ηPLQ) was 
measured. The ηPLQ of the PM6:CHAPh reached 94 %, while that of the 
PM6:CHSPh was 88 % (See Figure S9,SI). Consistent with the above 
discussion, the PM6:CHAPh has an ideal phase separation size, which 
facilitates rapid charge transfer and thus results in a high ηPLQ. In 
contrast, the small phase separation size of the PM6:CHSPh blend hin-
ders charge transport. Moreover, a high ηPLQ indicates fast charge 
transfer and reduces the carrier recombination rate. Subsequently, we 
conducted time-resolved photoluminescence (TRPL) spectroscopy on 
two SMAs film to explore the exciton lifetime, as illustrated in 
Figure S10(SI). The measured exciton lifetimes for the neat films of 
CHSPh and CHAPh were found to be 0.853 ns and 1.14 ns, respectively. 
This result indicates that CHAPh exhibits slower radiative recombina-
tion of photogenerated carriers, consistent with the higher PLQY and 
lower ΔEnr. To explore the physical mechanisms underlying the effi-
ciencies of various devices in greater depth, femtosecond transient ab-
sorption (fs-TA) spectroscopy was employed to analyze the exciton 
diffusion and dissociation behaviors within the blend films. Concen-
trating on the pure acceptor films, CHSPh and CHAPh exhibit a ground 

state bleaching (GSB) peak with negative signals spanning wavelengths 
from 780 to 860 nm, along with excited - state absorption (ESA) peaks at 
approximately 910 nm. This phenomenon suggests the existence of 
photoexcited local excitons (LEs) (Fig. 4a-b) [45]. In the blend film, a 
wavelength of 800 nm was utilized to selectively photoexcite the ac-
ceptors. As shown in Fig. 4c, in blend of PM6:CHAPh, GSB 
(600–890 nm) and ESA peaks (around 920 nm) appeared rapidly after 
excitation and then decayed. Additionally, a GSB signal was observed 
around 600 nm, indicating that the excited holes transferred (HT) from 
the acceptor to the donor [46]. However, in the PM6:CHSPh blend, only 
a weak GSB peak was observed, with no significant ESA peak detected 
(Fig. 4d). This phenomenon is closely related to the relatively low hole 
mobility of CHSPh itself. Despite the presence of a large interface for 
exciton dissociation and charge transfer, due to the difficulty of hole 
migration within CHSPh, holes can hardly be transported rapidly and 
efficiently from the interior of CHSPh to the interface with PM6, thus 
failing to achieve the transfer to PM6. Meanwhile, the PM6:CHSPh blend 
film exhibits a large ΔEnr, which implies that the energy that could have 
been used to drive the hole transfer is consumed by other processes. As 
depicted in Fig. 4e, the decay curves of this GSB signal were fitted using 
a biexponential function to assess the exciton dynamics. The smaller 
fitted parameters (τ1 and τ2) of the PM6:CHAPh blend films (τ1 = 1.49 
± 0.13 ps, τ2 = 17.89 ± 1.40 ps) imply that exciton dissociation and 
diffusion are more efficient compared to those in the PM6:CHSPh blend 
(τ1 = 1.43 ± 0.18 ps, τ2 = 21.62 ± 2.26 ps). This enhanced efficiency is 
conducive to suppressing recombination, thereby improving Jsc and FF.

Subsequent investigations focused on the behavior of excitons and 

Fig. 4. a-d) Femtosecond transient absorption spectra of CHAPh, CHSPh, PM6:CHAPh, and PM6:CHSPh. e) The kinetics curves of GSB (630 nm) for the donor. f) Jph 
versus Veff characteristics. g) Histograms of the μe and μh of the OSCs based on the PM6:CHSPh and PM6:CHAPh. h) Jsc and i) Voc versus light intensity of the 
optimized devices.
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charge carriers to investigate the underlying reasons for the difference in 
PCE of two binary devices. Initial assessment of the dependence on 
effective voltage (Veff) and photocurrent density (Jph) aims to clarify the 
properties of charge generation and exciton separation. The OSCs based 
on CHAPh achieved an impressive exciton dissociation efficiency (Pdiss) 
of 97.29 % and a charge collection efficiency (Pcoll) of 84.86 %, surpass 
the devise based on CHSPh, which exhibit Pdiss and Pcoll values of only 
91.16 % and 72.10 %, respectively (Fig. 4f). Thereby, accounting for the 
observed enhancement in Jsc in CHAPh-based OSCs. Subsequently, 
charge transport properties of the two blend films were characterized 
using space-charge-limited current (SCLC) method using the single- 
carrier devices with the structure ITO/ZnO/active layer/PNDITF3N/ 
Ag for electron mobility and ITO/PEDOT:PSS/active layer/MoO₃/Ag for 
hole mobility [47,48]. Comparted to the PM6:CHSPh, the blend of PM6: 
CHAPh demonstrates improved and more balanced mobility for both 
electrons and holes, with values of 5.03 × 10− 4/4.97 × 10− 4 cm− 2 V− 1 

s− 1, while CHSPh displays values of 2.58 × 10− 4/2.03 × 10− 4 cm− 2 V− 1 

s− 1, as depicted in Fig. 4g. The CHAPh presents a more optimal 
electron-hole mobility ratio (μe/μh) of 1.01, in contrast to the 1.27 ratio 
found in the CHSPh. This proportionality enhances charge transfer and 
positively influences the FF of PM6:CHAPh devices. In OSCs, the two 
primary channels for charge recombination that contribute to decreased 
FFs and PCEs are bimolecular recombination and trap-assisted recom-
bination. An evaluation of the dependence of Jsc and Voc on light in-
tensity reveals that the effect of bimolecular recombination on both 
types of binary OSCs is minimal (Fig. 4h). Additionly, the CHAPh-based 
OSC exhibits a lower trap-assisted recombination level compared to that 
of CHSPh (Fig. 4i), which is attributed to the highly ordered nano-
structures formed in CHAPh blends, which facilitate efficient exciton 
dissociation while effectively suppressing trap-assisted recombination 
through reduced grain boundary defect density.

3. Conclusion

In summary, we designated two novel SMAs, named CHSPh and 
CHAPh, and investigated the effects of symmetric versus asymmetric 
conjugated extensions on the central unit. It demonstrates that the 
asymmetric fused 2-bromobenzene significantly influences the aggre-
gation characteristics of the SMAs, leading to an enhancement in the 
PLQY without compromising the electron mobility within the acceptor 
phase. Furthermore, morphological analysis indicate that the asym-
metric fused extensions greatly improve acceptor crystallinity and 
effectively reduce phase separation, thereby facilitating rapid charge 
transport and minimizing recombination. Consequently, the PM6: 
CHAPh blend achieved an impressive PCE of 19.35 %, with an Eloss 
measured at 0.508 eV and ΔEnr as low as 0.180 eV. Therefore, the 
incorporation of asymmetric fused conjugated extensions into CH-series 
SMAs presents a promising strategy for reducing Eloss, and pave a way for 
further advancements in the designing for high efficiency materials in 
OSCs.
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