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Abstract: The practical application of lithium metal
batteries (LMBs) has been hindered by limited cycle-life
and safety concerns. To solve these problems, we
develop a novel fluorinated phosphate cross-linker for
gel polymer electrolyte in high-voltage LMBs, achieving
superior electrochemical performance and high safety
simultaneously. The fluorinated phosphate cross-linked
gel polymer electrolyte (FP-GPE) by in-situ polymer-
ization method not only demonstrates high oxidation
stability but also exhibits excellent compatibility with
lithium metal anode. LMBs utilizing FP-GPE realize
stable cycling even at a high cut-off voltage of 4.6 V (vs
Li/Li+) with various high-voltage cathode materials. The
LiNi0.6Co0.2Mn0.2O2 jFP-GPE jLi battery exhibits an ul-
tralong cycle-life of 1200 cycles with an impressive
capacity retention of 80.1%. Furthermore, the FP-GPE-
based batteries display excellent electrochemical per-
formance even at practical conditions, such as high
cathode mass loading (20.84 mgcm� 2), ultrathin Li
(20 μm), and a wide temperature range of � 25 to 80 °C.
Moreover, the first reported solid-state 18650 cylindrical
LMBs have been successfully fabricated and demon-
strate exceptional safety under mechanical abuse. Addi-
tionally, the industry-level 18650 cylindrical LiMn2O4 j

FP-GPE jLi4Ti5O12 cells demonstrate a remarkable
cycle-life of 1400 cycles. Therefore, the impressive
electrochemical performance and high safety in practical
batteries demonstrate a substantial potential of well-
designed FP-GPE for large-scale industrial applications.

Introduction

Lithium metal batteries (LMBs) are promising for next-
generation energy storage system, owing to the high
theoretical specific capacity (3860 mAhg� 1) and the lowest
redox potential (� 3.04 V vs. the standard hydrogen elec-
trode) of lithium metal anode (LMA).[1] Furthermore,
LMBs assembled with high-voltage cathode materials can
achieve even higher energy densities to meet the target of
500 Whkg� 1 setting by the evolving electric vehicle market.[2]

Unfortunately, conventional organic liquid electrolytes
(LEs) are unstable with LMA and high-voltage cathode
materials.[3] These severe side reactions between LEs and
electrodes can lead to the growth of Li dendrites and low
Coulombic efficiency, potentially resulting in a short cycle-
life and even safe hazards, such as combustion and
explosion.[1a,4] The inferior cycling performance and associ-
ated safety concerns impede the practical deployment of
LMBs.[5] Therefore, it is critical to develop high-voltage
LMBs with long cycle-life, high safety and ease of large-
scale fabrication for their practical applications.[6]

The gel polymer electrolytes (GPEs) for LMBs have
been proposed to solve the problems of limited cycle-life
and safety concerns.[7] Moreover, the in-situ polymerization
process enables the fabrication of GPEs and the assembly of
batteries at the same time, which is compatible with the
existing battery industry system and has promising applica-
tions in large-scale production of solid-state LMBs.[8] Fur-
thermore, cross-linking strategy is widely employed in GPEs
to suppress Li dendrites growth by enhancing the mechan-
ical strength of polymer matrices.[9] However, security issues
persist due to the flammability of the polymer matrices and
plasticizers. A practical solution is constructing GPEs with
nonflammable polymer matrices by using flame-retardant
cross-linkers, ensuring the safety of high-voltage LMBs.[10]

Among various fire-retardant moieties, phosphate stands
out for their low toxicity and superior ability to trap H* and
OH*, and thus suppress combustion.[11] Nevertheless, the
high reactivity between residual phosphate groups and
LMA may impact the cycle-life of high-voltage LMBs.[12]

Additionally, introducing F-containing groups into mole-
cules is a well-established method to improve the oxidation
stability towards high-voltage cathode materials and com-
patibility with LMA.[13] Consequently, introducing F-con-
taining groups into the phosphate cross-linker to fabricate a
F- and P-containing GPE polymer matrix may achieve
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superior electrochemical performance and high safety
simultaneously.[14]

Herein, by introducing fluoroalkyl (� CF2CF2� ) into
phosphate cross-linker (FP cross-linker), a novel cross-
linked fluorinated phosphate-based GPE (FP-GPE) has
been designed and synthesized for high-voltage LMBs. The
incorporation of fluoroalkyl and phosphate segments syn-
ergistically enhances the fire-retardant efficiency of FP-
GPE,[11b] thereby ensuring the high safety of the high-voltage
LMBs. Additionally, the introduction of fluorinated seg-
ments endows FP-GPE with high electrochemical stability
against high-voltage cathode materials and LMA, ensuring
superior electrochemical performance of LMBs. The
LiNi0.6Co0.2Mn0.2O2 (NCM622) jFP-GPE jLi battery exhibits
an ultralong cycle-life of 1200 cycles with an impressive
capacity retention of 80.1%, which is one of the best cycling
performance in polymer electrolyte-based LMBs under
comparable conditions so far. The FP-GPE also demon-
strates compatibility with various high-voltage cathodes,
enabling stable cycling even at a high charging cut-off
voltage of 4.6 V. Furthermore, the FP-GPE-based LMBs
display superior electrochemical performance under practi-
cal conditions, including high cathode mass loading
(20.84 mgcm� 2), ultrathin Li (20 μm), and a broad operating
temperature range of � 25 to 80 °C. Moreover, the FP-GPE-
based solid-state 18650 cylindrical cells using LMA have
been successfully fabricated for the first time, exhibiting a
high capacity of 1.0 Ah and high-safety towards mechanical
abuse. Additionally, the industry-level 18650 cylindrical
LiMn2O4 jFP-GPE jLi4Ti5O12 cells demonstrate a remark-
able cycle-life of 1400 cycles with a capacity retention of
70.5%. This study paves the way for the development of
LMBs with high electrochemical performance and high
safety.

Results and Discussion

Design and Characterization of FP Cross-linker and FP-GPE

The design scheme of FP cross-linker is shown in Scheme 1a.
To target a desired GPE, trimethylolpropane triacrylate
(ETPTA) is chosen as the cross-linker to generate a cross-
linked structure, contributing to excellent mechanical per-
formance and the stability towards both high-voltage
cathode materials and LMA.[15] However, the flammability
of the polymer matrix is still a safety hazard. To enhance the
safety of GPE, the phosphate moiety is introduced into the
cross-linker and tri(acryloyloxyethyl) (TAEP) is obtained
(the synthesis of TAEP is shown in SI). However, the high
reactivity between phosphate and LMA may lead to
unsatisfactory electrochemical performance. To simultane-
ously achieve excellent electrochemical performance and
high safety, fluoroalkyl (� CF2CF2� ) is incorporated into the
TAEP to enhance stability towards LMA and high-voltage
cathodes. Therefore, the FP cross-linker has been designed,
and the successful synthesis of FP-GPE is confirmed by
proton, fluorine and carbon nuclear magnetic resonance
spectroscopy (1H NMR, 19F NMR, 13C NMR) and high-

resolution mass spectrum (HRMS) measurements, as shown
in Figures S1–S3 (the synthesis of FP cross-linker is shown
in SI). To fully utilize the advantages of FP cross-linker,
vinylene carbonate (VC) has been selected as the monomer
to fabricate FP-GPE, ensuring superior interfacial compati-
bility with both high-voltage cathodes and LMA.[16]

To evaluate the oxidation stability of the GPEs, the
highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) of the respective
polymer segments are determined through density func-
tional theory (DFT) simulations (Scheme 1b). As previously
reported that fluorination can reduce the HOMO energy
level,[17] the polymer matrix of FP-GPE exhibits a low
HOMO energy level (� 7.64 eV) compared to ETPTA cross-
linked GPE (C-GPE) (� 6.43 eV) and TAEP cross-linked
GPE (P-GPE) (� 7.39 eV), suggesting superior oxidation
stability.

Consequently, C-GPE, P-GPE, and FP-GPE are pre-
pared via in-situ polymerization of their respective cross-
linkers. The liquid precursor transforms into gel after
polymerization, and Fourier transform infrared spectrum
(FT-IR) analysis of the polymer matrices confirm the
copolymerization (Figures S4–S5).[18] Figure S6 and Video S1
illustrate that C-GPE is flammable upon contact with fire,
while P-GPE and FP-GPE exhibit nonflammable properties,
underscoring the enhanced safety achieved by TAEP and
FP cross-linker. Therefore, FP-GPE exhibits the lowest
HOMO and superior safety, aligning with our design
concept.

Electrochemical Performance of FP-GPE and LMBs

The electrochemical performance of FP-GPE is evaluated,
with C-GPE and P-GPE as control electrolytes. Electro-
chemical floating analysis (EFA) is employed to study the
long-term oxidation stability of FP-GPE. As shown in
Figure 1a, no remarkable oxidation reaction in FP-GPE can
be observed even under 4.9 V (vs Li/Li+), demonstrating an
excellent stability under high voltage, which is desired in
GPE for high-voltage LMBs. The temperature dependence
of ionic conductivities for C-GPE, P-GPE, and FP-GPE has
been studied from 298.15 to 313.15 K. As depicted in
Figure 1b and Figure S7, the FP-GPE exhibits the highest
ionic conductivity throughout the temperature range
(4.45 mScm� 1 at 25 °C). This superior ionic conductivity is
attributed to the decreased activation energy of 8.6 kJmol� 1

for Li+ migration, indicating fast Li+ transport in FP-GPE,
which is benefit for achieving high capacities and satisfactory
rate performance.[10a,15b]

To evaluate the electrochemical performance of FP-
GPE at high operating voltages, NCM622 j jLi coin cells are
assembled and measured. Based on the high ionic con-
ductivity, the NCM622 jFP-GPE jLi battery demonstrates
notable discharge capacities of 183.4, 180.8, 172.9, 165.1,
154.7 and 134.3 mAhg� 1 at 0.1, 0.2, 0.5, 1, 2, and 5 C,
respectively. Upon reverting to 0.5 C, the battery can still
give a discharge capacity of 172.6 mAhg� 1, highlighting the
great rate performance of FP-GPE-based high-voltage
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LMBs. In contrast, LMBs based on C-GPE and P-GPE
deliver lower discharge capacities of 146.1, 136.7 mAhg� 1 at
1 C under identical conditions (Figure S8). The cycling
performance of NCM622 j jLi batteries are also evaluated.
As illustrated in Figure 1c–1f, the NCM622 jFP-GPE jLi
battery exhibits an outstanding cycle-life of 1200 cycles with
an impressive capacity retention of 80.1%, and 71.5% of the
capacity retained even after 1500 cycles. This result is one of
the most impressive cycling performances in polymer
electrolyte-based LMBs in comparable conditions (Ta-
ble S1). In contrast, the cycling stability of both NCM622 jC-
GPE jLi and NCM622 jP-GPE jLi batteries is significantly
inferior to that of the NCM622 jFP-GPE jLi battery. More-
over, FP-GPE demonstrates ideal compatibility with various
high-voltage cathode materials, exhibiting superior cycling
performance compared to C-GPE and P-GPE-based LMBs.
LiNi0.8Mn0.1Co0.1O2 (NCM811) jFP-GPE jLi battery displays
a discharge capacity of 181.8 mAhg� 1 and maintains a high
capacity retention of 86.0% after 1000 cycles at 1 C (Fig-

ure 1g). Additionally, LiCoO2(LCO) jFP-GPE jLi battery
exhibits a discharge capacity of 152.7 mAhg� 1 at 1 C, with a
capacity retention of 79.7% after 1500 cycles (Figure S9).
Furthermore, LiFePO4 (LFP) jFP-GPE jLi battery demon-
strates an exceptional capacity retention of 93.6% even after
4000 cycles at 2 C (Figure S10). In conclusion, FP-GPE-
based LMBs assembled with various cathode materials,
including NCM622, NCM811, LCO and LFP, demonstrate
ultralong cycle-life with high capacity retentions (Table 1
and Table S2), thereby substantiating the impressive stability
of FP-GPE.

Compatibility of FP-GPE with High-Voltage Cathode Materials
and LMA

To investigate the excellent electrochemical performance of
FP-GPE in high-voltage LMBs, the cathode electrolyte
interphase (CEI) and solid electrolyte interphase (SEI) are

Scheme 1. The design and structure of FP-GPE. (a) The design scheme of FP cross-linker. (b) The HOMO and LUMO energy levels of ETPTA,
TAEP, and FP cross-linker.
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characterized. From transmission electron microscope
(TEM) images of cycled NCM622 cathodes (Figure 2a–2c
and Figure S11), a uniform CEI with a thickness of only
about 5 nm is observed in FP-GPE, and the layered-phase
structure is retained well in NCM622 after cycling. These
evidences underscore the high stability of FP-GPE with
high-voltage cathode.[19] In contrast, the uneven and thick
CEI layers formed in both P-GPE (about 8 nm) and C-GPE
(about 19 nm) indicate the severe side reactions between the
high-voltage cathode and electrolytes.[20] The X-ray photo-
electron spectroscopy (XPS) analysis is carried out to

identify the component of CEI (Figure S11). Compared to
C-GPE and P-GPE, the CEI formed in FP-GPE is
inorganic-rich with a high content of LixPOyFz (687 eV)

[21]

and LiF (685 eV).[22] LixPOyFz can scavenge dissolved
transition metal ions and impede their migration, while LiF-
rich CEI exhibits a low electronic conductivity and avoids
further decomposition of FP-GPE.[13c,23] In summary, a thin,
uniform and inorganic-rich CEI forms between FP-GPE and
NCM622 cathode, contributing to the outstanding electro-
chemical performance of high-voltage LMBs.

Figure 1. Electrochemical performance. (a) Electrochemical floating analysis of FP-GPE. (b) Temperature-dependent ionic conductivities of C-GPE,
P-GPE, and FP-GPE. Typical charge–discharge curves of NCM622 j jLi batteries with (c) C-GPE, (d) P-GPE and (e) FP-GPE in the voltage range of
2.8–4.3 V at 25 °C under 1 C. (f) Long-cycling performance of NCM622 j jLi batteries with C-GPE, P-GPE and FP-GPE in the voltage range of 2.8–
4.3 V at 25 °C under 1 C. (g) Long-cycling performance of NCM811 j jLi batteries with C-GPE, P-GPE and FP-GPE in the voltage range of 2.8–4.3 V
at 25 °C under 1 C.
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The stability between GPE and LMA is equally crucial
in high-voltage LMBs.[4c] The Li j jLi symmetric cells are
assembled to evaluate the stability of LMA in different
GPEs (Figure S12). FP-GPE displays a high critical current
density (CCD) of 4.5 mAcm� 2, and Li j jLi symmetric cell
exhibits stable overpotential for 700 h, demonstrating high

stability to LMA (Figure S13). By contrast, P-GPE-based
symmetric cell exhibits a large overpotential and a poor
cycle-life (~150 h), indicating high reactivity between LMA
and P-GPE.[12,24] The prolonged cycle-life of the FP-GPE-
based Li j jLi symmetric cell demonstrates the enhanced
stability against LMA achieved by incorporating fluoroalkyl

Table 1: Cycling performance of LMBs based on FP-GPE.

Cathode material Voltage range (V) Current density Specific capacity (mAhg� 1) Cycle number Capacity retention

NCM622 2.8–4.3 1C 161.1
1000 85.0%
1200 80.1%
1500 71.5%

NCM811 2.8–4.3 1C 181.8
1000 86.0%
1200 80.9%

LCO 2.8–4.3 1C 152.7
1000 88.9%
1200 86.0%
1500 79.7%

LFP 2.5–4.0 2C 141.7

1000 98.9%
3000 98.0%
4000 93.6%

Figure 2. The characterization of CEI and SEI. TEM images of cycled NCM622 cathodes in NCM622 j jLi batteries after 50 cycles with (a) FP-GPE,
(b) P-GPE, and (c) C-GPE in the voltage range of 2.8–4.3 V at 25 °C under 1 C. SEM images of cycled Li in Li j jLi symmetric cells after 50 cycles
with (d, g) FP-GPE, (e, h) P-GPE, and (f, i) C-GPE at a current density of 0.1 mAcm� 2 and a capacity of 0.1 mAhcm� 2 at 25 °C.

Angewandte
ChemieResearch Articles

Angew. Chem. Int. Ed. 2024, e202404400 (5 of 9) © 2024 Wiley-VCH GmbH

 15213773, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/anie.202404400 by N

ankai U
niversity, W

iley O
nline L

ibrary on [27/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



(� CF2-CF2) groups into TAEP. The morphology of cycled Li
in Li j jLi symmetric cells further reveals distinct difference.
A uniform and dense morphology with large-grains Li
deposition is realized in FP-GPE (Figure 2d and 2 g),
indicating the excellent stability towards LMA.[25] In con-
trast, for P-GPE, the fiber-like Li deposition morphology
with many cracks and mossy Li structures can be clearly
observed on the surface of LMA (Figure 2e and 2 h),
contributing to the short cycle-life of batteries.[2a] In
addition, scanning electron microscopy (SEM) images for C-
GPE also displays inferior Li deposition morphology (Fig-
ure 2f and 2i). Compared to P-GPE, XPS analysis of cycled
Li in FP-GPE reveals a lower content of Li3PO4, attributed
to the phosphate decomposition, illustrating the improved
stability to LMA through the incorporation of fluoroalkyl
groups into phosphate (Figure S14).[10a] Moreover, an in-
organic-rich SEI layer forms in FP-GPE with a large amount
of LiF and LixPOyFz, enhancing the strength of LMA surface
and facilitating the homogeneous Li+ deposition.[26] The
excellent electrochemical stability and interphase morphol-

ogy between FP-GPE and electrodes ensure the outstanding
cycling performance of FP-GPE-based high-voltage LMBs.

Stable Operation of High-Voltage LMBs and Full Cells

Raising the charging cut-off voltage of LMBs is a promising
method to increase their energy density.[27] The electro-
chemical performance of FP-GPE-based LMBs is further
tested at elevated charging cut-off voltages at a rate of 1 C.
At the voltage of 4.5 V, the LMBs with NCM622 and
NCM811 cathode materials exhibit excellent cycling per-
formance with increased specific capacities (Figure S15–
S16). Notably, LCO jFP-GPE jLi battery delivers a high
specific capacity of 184.0 mAhg� 1 with a high retention of
82.1% even after 500 cycles (Figure S17).

Moreover, Li-rich Mn-based layered oxides (LLO) are
promising candidates for next-generation cathode materials
for their high specific capacity (over 250 mAhg� 1) and high
average discharge voltage (3.5 V).[28] However, limited by
the narrow electrochemical stability windows, only a few

Figure 3. Cycling performance of FP-GPE-based lithium batteries. (a) Cycling performance of the LNCMO jFP-GPE jLi battery in the voltage range of
2.0–4.6 V at 25 °C under 1 C. (b) Cycling performance of the NCM622 jFP-GPE jLi full cell in the voltage range of 2.8–4.3 V at 25 °C under 0.3 C. (c)
Cycling performance of the single-layer NCM622 jFP-GPE jLi pouch cell in the voltage range of 2.8–4.3 V at 25 °C under 0.3 C. (d) Digital photo of
the 1 Ah NCM811 jFP-GPE jLi pouch cell. (e) Typical charge–discharge curves of 1 Ah NCM811 jFP-GPE jLi pouch cell in the voltage range of 2.8–
4.3 V at 25 °C under 0.1 C. (f) Cycling performance of the NCM811 j jLi cylindrical cell with FP-GPE in the voltage range of 2.8–4.3 V at 25 °C under
0.1 C. (g) Digital photo of FP-GPE-based solid-state 18650 cylindrical cell. (h) Cycling performance of the 18650 cylindrical LiMn2O4 j jLi4Ti5O12 cell
with FP-GPE in the voltage range of 1.5–2.8 V at 25 °C under 1 C.

Angewandte
ChemieResearch Articles

Angew. Chem. Int. Ed. 2024, e202404400 (6 of 9) © 2024 Wiley-VCH GmbH

 15213773, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/anie.202404400 by N

ankai U
niversity, W

iley O
nline L

ibrary on [27/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



GPEs are compatible with LLO cathodes.[29] While, owing to
the excellent oxidation stability of FP-GPE,
Li1.2Ni0.13Co0.13Mn0.54O2 (LNCMO) jFP-GPE jLi battery
displays a high specific capacity of 231.2 mAhg� 1 at 1 C and
a high capacity retention of 84.5% after 100 cycles under a
charging cut-off voltage of 4.6 V (Figure 3a). The FP-GPE-
based LMBs assembled with NCM622, NCM811 and LCO
also exhibit superior cycling stability at 4.6 V (Figure S18).
As depicted in Figures S19–S23, the specific capacities of
FP-GPE-based LMBs with different cathode materials
noticeably increase with the raising voltage, indicating the
potential for achieving higher energy density.

The remarkable electrochemical performance of FP-
GPE enables its practical application scenarios. The Li metal
full cells with low N/P ratios are assembled using ultrathin
Li foil (50 μm) and high mass-loading NCM622 (8.49 and
20.84 mgcm� 2) as electrodes. Figure S24 shows that the
NCM622 jFP-GPE jLi full cell can cycle steadily for 300
cycles at 1 C with a cathode mass-loading of 8.49 mgcm� 2.
Increasing the cathode mass-loading up to 20.84 mgcm� 2,
the NCM622 jFP-GPE jLi full cell (with a low N/P ratio of
2.5) delivers a high areal capacity of 3.17 mAhcm� 2 with a
capacity retention of 85.2% after 100 cycles at 0.3 C (Fig-
ure 3b).

Furthermore, the NCM622 jFP-GPE jLi (50 μm) pouch
cells exhibit a capacity retention of 95.7% after 70 cycles
(Figure 3c). The multi-layers NCM811 jFP-GPE jLi pouch
cells are also fabricated and display a capacity of 1.2 Ah
(Figure 3d and 3e). More importantly, the first reported
solid-state 18650 cylindrical LMBs have been successfully
fabricated using FP-GPE with NCM811 cathode and Li
metal anode (N/P ratio=2.5). The FP-GPE-based 18650
cylindrical LMBs deliver a high capacity of 1.0 Ah, a high
energy density of 158.5 Whkg� 1 (227.2 Whkg� 1 without
considering the packing material, Table S3) and a high
capacity retention of 95.0% after 30 cycles (Figure 3f),
superior to the performance with commercial LE (1 M LiPF6
in DMC:EC:EMC=1 :1 :1 in volume) (Figure S25). Addi-
tionally, the FP-GPE-based industrial-level solid-state 18650
cylindrical lithium-ion batteries (LiMn2O4 j jLi4Ti5O12) also
demonstrate an outstanding cycling stability of 1400 cycles
with a high retention of up to 70.5% (Figure 3h). The
successful fabrication and the impressive electrochemical
performance of both pouch and 18650 cylindrical cells
demonstrate that the well-designed FP-GPE possesses
significant potential for large-scale industrial applications.

Figure 4. Safety tests of FP-GPE and batteries with FP-GPE. (a) Typical charge–discharge curves of NCM622 j jLi batteries with FP-GPE in the
voltage range of 2.8–4.3 V at different temperatures under 0.1 C. (b) Cycling performance of the NCM622 jFP-GPE jLi battery in the voltage range of
2.8–4.3 V at � 25 °C under 0.1 C. Nail test of NCM811 j jLi cylindrical cell with (c) FP-GPE and (d) LE. An LED powered by a NCM622 j jLi pouch
cell with FP-GPE e) before and after f, g) bending, h,i) cutting, j) nail tests.
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Electrochemical Performance and Safety of FP-GPE-Based
LMBs under Harsh Conditions

To further validate the electrochemical performance and
safety of FP-GPE-based high-voltage LMBs under harsh
conditions, NCM622 jFP-GPE jLi batteries are assembled
and cycled at different temperatures. The FP-GPE-based
batteries exhibit high specific capacities and cycling stability
across a broad temperature range of � 25 to 80 °C (Figure 4a
and Figure S26). At 60 °C, the LMB with FP-GPE displays a
high discharge capacity of 187.0 mAhg� 1 at 0.1 C and a high
retention of 87.5% after 150 cycles. While the capacities of
batteries with P-GPE and C-GPE decay rapidly. Notably,
even at a low temperature of � 25 °C, the FP-GPE demon-
strates a high ionic conductivity of 1.12 mScm� 1 (Fig-
ure S27). As a result, the NCM622 jFP-GPE jLi battery
exhibits an initial discharge capacity of 115.2 mAhg� 1 and an
outstanding capacity retention of 78.4% after 200 cycles
(Figure 4b).

Furthermore, both 18650 cylindrical and pouch LMBs
using FP-GPE possess excellent safety in mechanical abuse
tests. After being penetrated by a metal nail, the FP-GPE-
based solid-state 18650 cylindrical NCM811 j jLi cells exhibit
excellent safety without electrolyte leakage or combustion
(Figure 4c and Video S2), due to the condensed character
and the nonflammability of the F- and P- containing polymer
matrices. In sharp contrast, the LE-based NCM811 j jLi
18650 cylindrical cells burst into flame (Figure 4d and
Video S3). Additionally, the NCM622 j jLi pouch cell as-
sembled with FP-GPE can still power the light emitting
diode (LED) even after bending, cutting and nail-penetra-
tion tests (Figure 4e–4j and Video S4), demonstrating its
high safety and flexibility.

Conclusion

In summary, by introducing fluoroalkyl (� CF2CF2� ) in to
phosphate cross-linker, we have designed and synthesized a
FP cross-linker for high-voltage LMBs. Due to the rational
design of FP cross-linker, the in-situ polymerized FP-GPE
demonstrates high oxidation stability (>4.9 V vs Li/Li+),
excellent compatibility with various high-voltage cathodes,
superior cycling stability and high safety. The NCM622 jFP-
GPE jLi battery exhibits an ultralong cycle-life of 1200
cycles with a high retention of 80.1%. Furthermore, FP-
GPE facilitates LMBs to achieve exceptional electrochem-
ical performance even under practical conditions, including
high cathode mass loading (20.84 mgcm� 2) and ultrathin Li
(20 μm), extreme temperature conditions (� 25 to 80 °C).
Moreover, 1 Ah pouch cells and 18650 cylindrical cells
assembled with FP-GPE display outstanding electrochemical
performance with high safety towards mechanical abuse.
Therefore, our work paves the way for the development of
high-performance, high-voltage, and high-safety LMBs.
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with Various Cathode Materials

A fluorinated phosphate cross-linked gel
polymer electrolyte (FP-GPE) has been
designed and fabricated for high-voltage
lithium metal batteries (LMBs). The FP-
GPE-based batteries display excellent
electrochemical performance and high
safety simultaneously even at practical
conditions. Moreover, the first reported
solid-state 18650 cylindrical LMBs have
been successfully fabricated and demon-
strate exceptional safety under mechan-
ical abuse.
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