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ABSTRACT: Polymer  electrolytes  featuring flexibility,
processability, and compatibility with large-scale roll-to-roll
fabrication processes have emerged as promising candidates
for solid-state lithium metal batteries. Herein, we have designed
and synthesized an all-in-one free-standing acrylate-grafted
cellulose separator polymer electrolyte (ACSPE) through the
copolymerization of acrylate-grafted cellulose separator (ACS).
This synthetic strategy leverages the abundant hydroxyl groups
in the cellulose separator, which are substituted with acryloyl
chloride to form an acrylate-grafted separator. The resulting
ACSPE exhibits a high ionic conductivity of 1.78 x 10 S-cm™
at room temperature, improved oxidation stability (5.57 V), and
enhanced mechanical strength (10.0 MPa), indicating its high
compatibility with high-voltage cathode, Li metal anode, and
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scalable roll-to-roll production processes. Li|ACSPE|LiNiggC0y1Mny 0, (NCM811) cells exhibit a long stable cycle life of
1000 cycles at 0.5 C/1 C with capacity retention of 75.6%, achieving stable performance across a wide temperature range
from 0 to 60 °C. Furthermore, when paired with a 50 um thin Li foil, full cells using NCM811 cathode with a mass loading of
6 mg-cm™ exhibit a high discharge capacity of 191.0 mAh-g" at 0.1 C and maintain excellent cycling stability with a
retention rate of 93.3% after 100 cycles. This study provides valuable insights into the chemical modification and design
strategies for improving the processability and performance of polymer-based solid-state batteries.

KEYWORDS: polymer electrolytes, lithium metal batteries, high-

1 Introduction

Lithium-ion batteries (LIBs) have been widely employed in portable
electronic devices, electric vehicles, and large-scale energy storage
systems [1, 2]. However, their relatively low energy density
(~ 300 Whkg™) presents significant challenges in meeting the
escalating demands for higher-performance energy storage
solutions [3-5]. In contrast, lithium metal batteries (LMBs), when
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voltage, long cycling

paired with nickel-rich cathodes, are considered as promising
alternatives due to their ability to deliver a significantly enhanced
energy density of over 500 Whkg™ [6, 7]. Despite their advantages,
the application of commercial liquid electrolytes (LEs) in LMBs
raises critical safety concerns. These electrolytes are highly
flammable and volatile, making them susceptible to fire and
explosion hazards [8, 9]. Additionally, the high reactivity of the
lithium-metal anode exacerbates issues such as excessive electrolyte
consumption and uncontrollable Li-dendrite growth. These
challenges not only severely limit the cycle life of the batteries but
also lead to short circuits, increasing the risk of catastrophic safety
accidents [10, 11].

Solid state electrolytes (SSEs) have emerged as a promising
alternative to address the aforementioned issues [12-16]. Among
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various types of SSEs, inorganic solid electrolytes exhibit excellent
ionic conductivity. However, their poor mechanical and interfacial
properties, along with challenges in scaling up production,
significantly limit their practical applications [17, 18]. In contrast,
solid polymer electrolytes (SPEs) offer advantages, such as light
weight, excellent flexibility, good processability, and low interfacial
resistance, making them highly suitable for integration into solid-
state LMBs and large-scale roll-to-roll manufacturing processes
[19-23]. Despite these advantages, the ionic conductivities of SPEs
at room temperature (~ 10° S-cm™) remain relatively low, falling
short of the requirement for electrolytes of LMBs [24-27]. To
overcome this limitation, one effective method is the incorporation
of plasticizers or liquid electrolytes, resulting in the development of
quasi-solid polymer electrolytes (QSPEs) or gel polymer electrolytes
(GPEs), which exhibit enhanced ionic conductivity [28—30].

Incorporating plasticizers or liquid electrolytes into polymer
electrolytes typically compromises their mechanical strength,
resulting in short circuiting of batteries during assembly and
operation [31]. To address this issue, various strategies have been
explored to enhance the mechanical properties of polymer
electrolytes [21]. One effective approach involves the creation of
chemically cross-linked structure through ultraviolet (UV) or
thermal polymerization, which significantly improves mechanical
properties [32—34]. Another efficient strategy is the incorporation
of a robust porous substrate as a reinforcing framework to
strengthen the mechanical properties of polymer electrolytes.
Numerous materials have been employed as the substrate in
polymer electrolytes, such as polypropylene (PP) separators [35],
polyimide (PI) films ([36], polyethylene terephthalate (PET)
nonwovens [29], porous cellulose nanopaper [37], and so forth.
Among them, cellulose-based materials stand out due to their
abundant hydroxyl groups, which offer excellent potential for
functionalization. This unique property enables the introduction of
specialized functionalities or even chemically cross-linked
structures, further enhancing their applicability in polymer
electrolytes.

In this work, we have successfully developed an all-in-one free-
standing acrylate-grafted cellulose separator polymer electrolyte
(ACSPE) through the copolymerization of acrylate-grafted cellulose
separator (ACS) with polymer monomer and a cross-linker, along
with the incorporation of plasticizers. The cellulose separator serves
not only as a structural framework but also as a chemically active
component that bonds with polymer monomer to form a
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chemically cross-linked structure. By integrating these two
strategies, ACSPE shows enhanced mechanical strength of
10.0 MPa and an expanded electrochemical window of 557 V,
achieving superior compatibility with both the lithium metal anode
and the high-voltage cathode. The fabricated polymer electrolyte
exhibits a high ionic conductivity of 1.78 x 10° S.cm™ at room
temperature. Li||Li symmetric cells using ACSPE achieve stable
lithium plating/stripping and a prolonged cycling lifespan of
1400 h. Furthermore, Li|ACSPE|LiNiysCoq;Mny;0, (NCM811)
batteries deliver a high discharge specific capacity of 189.6 mAh-g™
at 0.5 C and a remarkable cycle life of 1000 cycles at 0.5 C/1 C
(charge at 0.5 C and discharge at 1 C), with a capacity retention of
75.6%. Additionally, Li|[NCM811 batteries maintain stable
performance across a wide temperature range from 0 to 60 °C. At
the cut-off voltage of 4.5 V, Li| ACSPE|NCMS811 batteries exhibit a
high discharge capacity of 207.6 mAh-g™ at 0.5 C and a capacity
retention of 80.0% after 300 cycles. The full cells using NCM811
cathode with a mass loading of 6 mg-cm™ and 50 um Li foil deliver
a high discharge capacity of 191.0 mAh-g™ at 0.1 C and excellent
cycling stability with a retention rate of 93.3% after 100 cycles.
Moreover, the all-in-one polymer electrolytes are compatible with
the current roll-to-roll manufacturing process and can be fabricated
on an industrial scale. This work offers new perspectives for the
chemical modification and large-scale production of polymer-based
high-voltage LMBs, offering a promising pathway for their practical
application.

2 Results and discussion

2.1 Preparation and characterization of ACSPE

As depicted in Scheme 1, the synthesis initiated with the
modification of cellulose separator (CS), which contained abundant
hydroxyl groups, through an acylation reaction with acryloyl
chloride (AC) to produce an acrylate-grafted cellulose separator.
The detailed synthesis procedure is described in Section S1 and Fig.
S1 in the Electronic Supplementary Material (ESM). The successful
acylation of ACS was confirmed by Fourier transform infrared
spectroscopy (FTIR) (Fig. S2 in the ESM), which revealed
distinctive adsorption peaks at 1652 and 1716 cm™, corresponding
to C=C and C=O vibrations, respectively. Scanning electron
microscopy (SEM) analysis demonstrated that ACS maintained its
porous fiber membrane structure (Fig. S3(a) in the ESM), showing

",..5' ACSPE

Scheme1 Schematic diagram of the roll-to-roll continuous coating fabrication process, which consists of four key steps: grafting reaction, washing and drying,

dip-coating with precursor, and UV curing.
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minimal morphological changes compared to the pristine CS
(Fig. S3(b) in the ESM). Following washing and drying procedures,
ACSPE was prepared through UV-initiated copolymerization. This
process involved the integration of ACS with the monomer
(1H,1H,2H,2H-nonafluorohexyl methacrylate, NFMA) and the
cross-linker (ethoxylated trimethylolpropane triacrylate, ETPTA)
under UV irradiation, along with the addition of lithium salt and
plasticizers. The formulation also incorporated lithium
bis(trifluoromethanesulfonyl)imide (LiTFSI) as the lithium salt,
along with tetraethylene glycol dimethyl ether (G4) and
1,2-bis(1,1,2,2-tetrafluoroethoxy)ethane (TFEE) as plasticizers. The
ratio of lithium salt to plasticizers is detailed in Section SI in the
ESM. Furthermore, the successful fabrication of a large-size
polymer membrane as shown in Fig. 1(a) demonstrates the
feasibility of industrial-scale roll-to-roll manufacturing for ACSPE.
For comparison, a control polymer electrolyte (CSPE) was
synthesized using pristine cellulose separator without acrylate
grafting.

After curing, as shown in the SEM image in Fig. 1(b), ACSPE
exhibits a uniform and smooth surface, with polymers thoroughly
penetrating the membrane’s porous structure. Cross-sectional SEM
analysis in Fig. 1(c) indicates that the ACSPE membrane maintains
a consistent thickness of approximately 100 pm. To verify the
chemical reactions during the UV curing stage, FTIR was
conducted. As shown in Fig. 1(d), the disappearance of the C=C
adsorption peak at 1645 cm™, along with the appearance of the
distinct C=0 vibration peak at 1732 cm™ in ACSPE, confirms the
complete polymerization of all components, with a cross-linked
polymer network constructed. This cross-linked structure of
ACSPE provides a stable framework for the incorporation of
plasticizers and lithium salts, thereby facilitating efficient Li*
transport.

Figure 1(e) presents the X-ray diffraction (XRD) data of CS,
ACS, and ACSPE, showing attenuated crystal peaks of ACSPE after
polymerization. This attenuation indicates a transition to a more
amorphous state, which generally facilitates Li* transport and
improves the ionic conductivity of the electrolyte [29]. The
mechanical properties of polymer electrolytes are crucial for
practical application, as they must withstand stresses during battery
manufacturing, charge-discharge cycles, and potential mechanical
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abuses [36]. Notably, ACSPE exhibits a high tensile strength of
10.0 MPa in Fig. 1(f), which is significantly greater than that of
CSPE (3.3 MPa). This superior mechanical strength is primarily
attributed to the copolymerization of ACS with the polymer
skeleton. Additionally, thermogravimetric analysis (Fig. S4 in the
ESM) confirms the excellent thermal stability of ACSPE, making it
suitable for practical batteries.

Electrochemical impedance spectroscopy (EIS) tests were
conducted to evaluate the ionic conductivities of ACSPE at various
temperatures, as depicted in Fig. S5 in the ESM. The ionic
conductivity of ACSPE attains 1.78 x 10° Scm™ at room
temperature. Based on the Arrhenius equation, the activation
energy of ACSPE was calculated to be 0.344 eV (Fig. 1(g)),
suggesting favorable Li* migration kinetics within the electrolyte
matrix. Li* transference number of Li||Li symmetric cells assembled
with ACSPE and CSPE was also evaluated as shown in Fig. S6 in
the ESM. To evaluate the electrochemical stability of the
electrolytes, linear sweep voltammetry (LSV) measurements were
employed to evaluate the electrochemical stability window of the
electrolytes. As shown in Fig. 1(h), ACSPE exhibits an
electrochemical stability window up to 5.57 V, surpassing that of
CSPE (5.08 V). This enhanced oxidation stability is attributed to the
copolymerization of ACS within the polymer network, which
improves both the structural integrity and electrochemical
properties of the electrolyte system.

2.2 Limetal anode stability evaluation

To investigate the compatibility of the electrolyte with lithium
metal, Li||Li symmetric cells assembled with ACSPE and CSPE
were tested at a current density of 0.1 mA-cm™ and a fixed capacity
of 0.1 mAh-cm? (Fig. 2(a)). The Li|ACSPE|Li cells demonstrated
excellent stability in voltage polarization, operating without short-
circuiting for over 1400 h. In stark contrast, the control Li|CSPE|Li
cell failed due to short-circuiting after merely 291 h of operation.
Further testing of Li||Li symmetric cells under more demanding
current conditions, as illustrated in Fig. 2(b) and Fig. S7 in the ESM,
reveals that the LijACSPE|Li cells maintain their stable
performance. Notably, the Li|ACSPE|Li cell exhibits a high critical
current density (CCD) value of 1.0 mA-cm? significantly
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Figure1 (a) Digital photograph of ACSPE membrane after UV curing. (b) Surface SEM image of ACSPE membrane. (c) Cross-sectional SEM image of ACSPE. (d)
FTIR spectra of CS, ACS, ETPTA, and ACSPE. (e) XRD patterns of CS, ACS, and ACSPE. (f) Stress-strain curves of CSPE and ACSPE membranes. (g) Ionic
conductivities of ACSPE at different temperatures. (h) LSV curves of the electrolytes at a scan rate of 1 mV-s™ in the voltage range of 3-6 V.
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Li symmetric cells with ACSPE and CSPE at 0.1 mA-cm™ and 0.1 mAh-cm™ (b) CCD tests of LijACSPE|Li and

Li|CSPE|Li cells. (c) and (d) XPS depth profiles of N 1s and F 1s for the SEI on the cycled Li metal electrodes with ACSPE. (e)-(h) SEM images illustrating surface
morphologies and cross-section views of the Li-metal anodes with ACSPE and CSPE in Lil|Li symmetric cells at 0.1 mA-m® and 0.1 mAhcm?® after

50 cycles. Insets of (e) and (f) show digital photographs of the cycled Li metal.

surpassing the CCD of the control CSPE cells, which reaches only
0.7 mA-cm™ (Fig. 2(b)). These results indicate the superior
compatibility and enhanced interfacial stability between the ACSPE
membrane and the lithium metal anode, underscoring its potential
for LMBs.

To elucidate the mechanism underlying the stability between
different electrolytes and the lithium metal anode, the compositions
of the solid electrolyte interphase (SEI) on the cycled Li metal anode
were investigated using X-ray photoelectron spectroscopy (XPS)
with Ar ion etching for depth profiling. As depicted in Figs. 2(c)
and 2(d) and Fig. S8 in the ESM, the cycled Li metal paired with
ACSPE exhibits higher intensities of LiF (684.9 eV) and Li;N
(3985 eV) species, both on the surface and with increasing
sputtering depth. These abundant inorganic species in SEI facilitate
uniform Li* transport to the Li metal anode surface and
significantly suppress Li dendrite growth, thereby enabling stable Li
plating/stripping over prolonged cycling [35, 38].

To further evaluate the Li dendrite-suppression capability of
different electrolytes, the surface and cross-sectional morphologies
of lithium metal electrodes after lithium plating/stripping cycling
were characterized by SEM. As presented in Fig. 2(e), the cycled
electrode in contact with ACSPE maintains a remarkably uniform
and dense surface morphology. In contrast, the electrode paired
with CSPE exhibits a porous, rough, and loosely packed surface
morphology in Fig. 2(f). These microscopic observations are further

Nano Research, 2025, 18, 94907323
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corroborated by optical photography. The electrode cycled with
CSPE shows significant dead Li formation, evidenced by a
distinctive blackened surface, while the ACSPE-paired electrode
exhibits minimal dead Li accumulation. This distinction in dead Li
formation plays a crucial role in cycling longevity, as excessive dead
Li accumulation severely compromises the operational lifespan of
the battery. Cross-sectional analyses provide additional insights into
the electrode morphologies. The Li metal cycled with ACSPE
demonstrates a flat and dense Li deposition pattern in Fig. 2(g),
whereas the CSPE-paired Li metal exhibits pronounced protrusions
along its cross-section in Fig. 2(h). These results collectively
demonstrate the excellent compatibility of the ACSPE with lithium
metal anode.

2.3 Electrochemical performance evaluation of high-
voltage cathode

The superior anti-oxidative property of ACSPE enables its
compatibility with high-voltage cathodes, such as NCM811. To
investigate this compatibility, coin cells were assembled using Li
metal as the anode, ACSPE and CSPE as electrolytes, and NCM811
as the cathode active material. Figure 3(a) illustrates the cycling
performance of Li||[NCM811 cells with different electrolytes, with a
voltage window of 2.8-4.3 V. The cell using ACSPE exhibits a
higher discharge specific capacity of 189.6 mAh-g* compared to
166.1 mAh-g" for its CSPE counterpart. Moreover, the ACSPE-
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Figure 3 (a) Cycling performance of Li|[NCM811 cells with different electrolytes at 0.2 C/0.5 C. (b) Nyquist curves of Li|[NCM811 cells with different electrolytes before
cycle and after 50 cycles at 0.2 C/0.5 C (inset is the equivalent circuit diagram). (c) Cycling performance of Lij ACSPE[NCMS811 cells at 0.5 C/1 C. (d) Cycling performance
of 45 V Li|[NCM811 cells with different electrolytes at 0.2 C/0.5 C. (e) Charge-discharge profiles of Li| ACSPE[NCM811 cell at different temperatures. (f) Cycling
performance of Lij ACSPE[NCMB8L11 cell at 0 °C. (g) Cycling performance of Li| ACSPE[NCM811 cell at 60 °C. The mass loading of Li|[NCM811 cells is 1.5-2.0 mg-cm™

based cells demonstrate significantly improved cycling stability,
achieving a higher capacity retention of 86.0% after 500 cycles with
a high reversible specific capacity of 162.9 mAh-g™. To gain deeper
insights into the interfacial charge transfer kinetics, we conducted
EIS measurements before and after 50 cycles. As shown in Fig. 3(b),
the initial EIS results reveal that batteries incorporating ACSPE
exhibit lower electrochemical impedance (224 ), compared to
those with CSPE (268 (1), indicating enhanced initial ion
conduction. After 50 cycles, both systems show decreased
impedance values, with ACSPE-based batteries exhibiting a lower
impedance of 175 Q) compared to 255 Q) for CSPE-based batteries.
These results suggest that ACSPE enables faster ion conduction and
establishes improved interfacial contact with electrodes, ultimately
leading to enhanced electrochemical performance.

To further investigate the electrochemical stability under elevated
current density, Lij ACSPE[NCMS]11 cells were tested at 0.5 C/1 C
using galvanostatic charge/discharge cycling (Fig. 3(c)). The ACSPE-
based cell, benefiting from the robust electrode-electrolyte interface
provided by the polymer electrolyte, exhibits impressive
performance with a high initial discharge capacity of 164 mAh-g™' at
1 C and maintains 75.6% capacity retention after 1000 cycles.
Additionally, the ACSPE-based cell also exhibits superior rate
performance, delivering remarkable specific capacities of 200.5,
190.7, 1854, 175.8, and 166.7 mAh-g™ at discharge rates of 0.1, 0.2,
0.5, 1, and 1.5 C, respectively (Fig. S9 in the ESM). Furthermore,
leveraging the excellent oxidative stability of ACSPE, we explored
its application in high-voltage (> 4.5 V) cathode systems. As shown
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in Fig. 3(d), the 4.5 V Li|[NCM811 battery incorporating ACSPE
exhibits an impressive discharge capacity of 207.6 mAh-g* and
maintains 80.0% capacity retention after 300 cycles. In contrast, the
CSPE-based battery exhibits inferior performance with a lower
initial discharge capacity of 151.9 mAh-g' and suffers from
significant capacity degradation, retaining only 70.8% capacity after
236 cycles.

In addition, encouraged by the excellent ion transport capability
of ACSPE, the performance of Li|ACSPE[NCMS811 cell was
further evaluated over a broad temperature range. At 0 and 60 °C,
the cells manifest excellent discharge capacities of 190.9 and
232.1 mAh-g* at 0.1 C, respectively (Fig. 3(e)). Furthermore, at
0 °C, the Li| ACSPE|NCMB811 battery exhibits outstanding cycling
stability with a high capacity retention of 98.4% after 100 cycles at
0.1 C in Fig. 3(f). At 60 °C, the battery with ACSPE displays a high
discharge capacity of 226.2 mAh-g™ at 0.5 C and maintains a high
capacity retention of 86.4% after 200 cycles in Fig. 3(g).

To further evaluate the versatility of ACSPE, we conducted
comprehensive evaluations using various cathode materials,
including LiFePO, (LFP), LiNi;sMn,,Co,,0, (NCM622), and
Li;,Mng5,C0q13Nig 150, (LMCNO) cathodes. The Li|ACSPE|LFP
battery achieved a long cycling stability of over 1000 cycles with an
excellent capacity retention of 78.2% (Fig. S10 in the ESM). In
addition, the Li|ACSPE|NCM622 battery at a cut-off voltage
of 43 V exhibited an initial discharge specific capacity of
160.8 mAh-g* at 0.5 C, maintaining excellent capacity retention
of 80.1% after 1000 cycles (Fig. S11 in the ESM). At an elevated cut-
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off voltage of 4.5 V, the Li|ACSPE|[NCM622 battery displayed an
impressive initial discharge capacity of 183.6 mAh-g* at 0.5 C,
retaining a capacity retention of 78.5% after 500 cycles (Fig. S12 in
the ESM). Notably, benefiting from the superior electrochemical
stability of ACSPE, the LijACSPE[LMCNO battery operated
successfully at an even higher cut-off voltage of 4.7 V. This
system delivered an outstanding discharge specific capacity of
237.2 mAh-g™ at 0.5 C and maintained stable cycling performance
over 100 cycles (Fig. S13 in the ESM). These results, summarized in
Table S1 in the ESM, highlight that our all-in-one ACSPE design
enables excellent cycling performance across various cathode
materials and operating conditions, underscoring its remarkable
versatility and practical applicability in diverse LMB configurations.
To assess the practical electrochemical performance and safety
features of the all-in-one ACSPE, we conducted comprehensive
tests using both coin-type and pouch-type cells. In coin full cell
configuration with NCM811 cathode (mass loading: 6 mg-cm™)
and 50 pm Li foil, the battery exhibits an impressive discharge
specific capacity of 191.0 mAh-g* at 0.1 C and excellent cycling
stability with a retention rate of 93.3% after 100 cycles (Fig. 4(a)).
The system demonstrates robust performance even with increased
cathode mass loading of 7.3 mg-cm™, sustaining stable cycling for
180 cycles (Fig. S14 in the ESM). Meanwhile, the pouch cell displays
a high discharge capacity of 192.0 mAh-g" at 0.2 C with an
exceptional capacity retention of 98.8% over 100 cycles (Fig. 4(b)).
The charge/discharge curves of 50 um LijACSPE|6.0 mg-cm™
NCMB811 coin full cell at 0.1 C and 50 ym Li|ACSPE|2.0 mg-cm™
NCMB811 pouch cell at 0.2 C after different cycles are provided in
Fig. S15 in the ESM. The performance of 50 pum Li|ACSPE|

6.1 mg-cm™ NCM8I11 pouch full cell at 0.05 C was evaluated, as
shown in Fig. S16 in the ESM. It delivers a high discharge capacity
of 1742 mAh-g" and maintains stable cycling performance over 6
cycles. To further evaluate the safety of the ACSPE electrolyte, we
used a pouch cell to power a light-emitting diode (LED) screen
displaying the NKU logo as shown in Fig. 4(c) and conducted
extreme condition tests. The cell maintains stable operation even
under harsh conditions, including bending, cutting, and punching
as shown in Figs. 4(d)-4(f). These results demonstrate that the
developed all-in-one polymer electrolyte successfully combines its
superior safety with excellent electrochemical performance, making
it an ideal candidate for practical applications.

24 Interfacial behavior of high-voltage cathode

The surface morphologies of high-voltage NCM811 cathodes after
50 cycles in Li||[NCM811 batteries with different electrolytes were
characterized using SEM. The cycled NCM811 particles from the
Li|ACSPE[NCM811 battery display well-preserved mechanical
integrity in Fig. 5(a), whereas those from the control
Li|CSPE|NCMS]11 battery show evident intergranular cracking in
Fig. 5(b). Such cracking is a well-documented critical issue in Ni-
rich cathodes, known to accelerate capacity degradation and
severely compromise long-term cycling stability, particularly under
high-voltage  conditions [39]. Moreover, high-resolution
transmission electron microscopy (HRTEM) was employed to
investigate the cathode-electrolyte interphase (CEI) morphology
and the crystal structure of cycled NCMS811 cathodes. In the
ACSPE system, a uniform and thin CEI layer with a thickness of
~ 2.6 nm is observed in Fig. 5(c). In contrast, the CSPE system
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Figure4 (a) Cycling performances of 50 ym Li|ACSPE[6.0 mg-cm™ NCMS811 coin cell at 0.1 C. (b) Cycling performance of Li|ACSPE[NCM811 pouch cell (inset is
optical image of pouch cell powering a light-emitting diode screen). (c) Optical image of a pouch cell powering a light-emitting diode screen and optical images of it under

harsh conditions including (d) bending, (e) cutting, and (f) punching.
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Figure5 SEM images of the cycled NCMB811 cathodes with (a) ACSPE and (b) CSPE after 50 cycles. TEM images of the cycled NCM811 cathodes with (c) ACSPE and
(d) CSPE after 50 cycles. (e)-(h) XPS depth profiles of N 1s and F 1s for cycled NCM811 electrodes with ACSPE and CSPE.

develops a thick and non-uniform CEI layer in Fig. 5(d). Moreover,
the NCM811 cathode in both systems retains its layered structure
with identical lattice spacing of 0.47 nm. The formation of a
uniform, thin CEI layer combined with the well-preserved crystal
structure provides compelling evidence for the exceptional
compatibility between ACSPE electrolyte and high-voltage
NCMB811 cathodes.

Furthermore, XPS depth profiling was performed to analyze the
CEl compositions formed in both electrolytes, as shown in
Figs. 5(e)-5(h) and Fig. S17 in the ESM. In the N 1s spectra, the
cycled NCM811 with ACSPE in Fig. 5(e) exhibits a higher intensity
of LisN (3985 eV) both on the surface and with increasing
sputtering depth, compared to the CSPE system in Fig. 5(g). The
enhanced presence of Li;N is beneficial for facilitating uniform Li*
transport across the interface. Additionally, in the F 1s spectra, as
the sputtering depth increases, the intensity of C-F bond of cycled
NCMB811 with ACSPE decreases while the intensity of LiF increases
in Fig. 5(f), which is similar to the CSPE system in Fig. 5(h). But the
ACSPE system shows lower intensity of C-F bond compared to the
CSPE system. This demonstrates that the surface of NCM811
electrode cycled with ACSPE accumulates fewer side reaction
byproducts, efficiently suppressing undesirable interfacial reactions
on the cathode surfaces. Further evidence is provided by the C peak
analysis, where NCM811 cycled with ACSPE shows notably lower
intensity, compared to the CSPE system (Fig. S17 in the ESM). This
reduced carbon signal indicates that the CEI formed in ACSPE
effectively inhibits solvent consumption, consistent with the
observations of a thin and uniform CEI layer. Consequently, these
findings elucidate the enhanced electrochemical stability of
Li|ACSPE|NCMS811 cells during prolonged cycling.

3 Conclusions

In summary, we have successfully developed an innovative all-in-
one polymer electrolyte through the chemical bonding of an
acrylate-grafted cellulose separator with polymer monomer and a
cross-linker. The cellulose separator not only functions as a robust
framework but also chemically bonds with polymer monomer to
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form a chemically cross-linked architecture. As a result, the
developed ACSPE exhibits enhanced mechanical strength
(10.0 MPa) and an expanded electrochemical window (5.57 V),
demonstrating superior compatibility with both the Li metal anode
and the high-voltage cathode. In electrochemical performance tests,
Li||Li symmetric cells with ACSPE achieved stable Li
plating/stripping and demonstrated an extended cycling lifespan for
1400 h. The Li|ACSPE[NCMB811 batteries delivered impressive
durability, sustaining 1000 cycles at 0.5 C/1 C with capacity
retention of 75.6%, while maintaining stable performance across a
wide temperature range from 0 to 60 °C. Furthermore, full cells
using NCM811 cathode (mass loading: 6 mg-cm™) and 50 pym Li
foil presented a high discharge capacity of 191.0 mAh-g” at 0.1 C
and excellent cycling stability with a retention rate of 93.3% after
100 cycles. A significant advantage of this all-in-one polymer
electrolyte lies in its compatibility with existing roll-to-roll
manufacturing processes, making it highly suitable for industrial-
scale production. This work thus offers valuable insights into the
chemical modification and processability design for polymer-based
materials, establishing a promising pathway toward the practical
implementation of next-generation energy storage systems.

Electronic Supplementary Material: Supplementary material
(experimental  section,  characterizations, electrochemical
measurements, and supplementary figures and table) is available in
the online version of this article at https://doi.org/10.26599/NR.
2025.94907323.
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