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Abstract p-Phenylenediamine (PPD) functionalized

graphene oxide (GO) materials (PPDG) were prepared

through a one-step solvothermal process and their appli-

cation as supercapacitors (SCs) were studied. The PPD is

not only as the spacers to prevent aggregating and re-

stacking of the graphene sheets in the preparing process but

also as nitrogen sources to obtain the nitrogen-doped

graphene. The structures of PPDG were characterized by

Fourier transformed infrared spectroscopy (FT-IR), X-ray

diffraction spectroscopy (XRD), Raman spectroscopy and

X-ray photoelectron spectroscopy (XPS) and the results

show that the nitrogen-doped graphene was achieved with

nitrogen content as high as 10.85 at.%. The field emission

scanning electron microscopy (FE-SEM) and high resolu-

tion transmission electron microscopy (HR-TEM) have

confirmed that the morphologies of PPDG were loose

layered with less aggregation, indicating that PPD mole-

cules, as spacers, effectively prevent the graphene sheets

from restacking during the solvothermal reaction. The

special loose textures make PPDG materials exhibit

excellent electrochemical performance for symmetric SCs

with superior specific capacitance (313 F/g at 0.1 A/g), rate

capability and cycling stability. The present synthesis

method is convenient and may have potential applications

as ultrahigh performance SCs.
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1 Intoduction

Supercapacitors (SCs), also called electrochemical capacitors

and ultracapacitors, are increasingly important owing to their

fascinating physical and chemical properties of high power

density, ultra-long cycle life, and rapid charge/discharge rates

[1, 2]. Based on the charge storage mechanism, SCs can be

divided into pseudo-capacitors and electrical double layer

capacitors (EDLCs) [3]. The performance of the SCs highly

depends on the properties of electrode materials [4]. Graphene,

a flexible 2-dimensional (2D) single-layer sheet of sp2-

hybridized carbon material, has recently attracted great inter-

ests for SCs applications because of its excellent and unique

properties, such as good chemical stability, high electrical

conductivity and large surface area [5–8]. Unfortunately, the

individual graphene sheets tend to form irreversible aggrega-

tion or restacking during the solvothermal reduction process

because of the p-p stacking, leading to a dramatic decrease in

the surface area and lower electrochemical performance [9].

Therefore, how to efficiently prevent the irreversible aggre-

gation and minimize the restacking effect is of great important
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to improve the performance of graphene-based SCs and

expand the applications of graphene [10]. Many methods

[11–13] and feasible active species have been used as spacers.

Carbon nanotubes (CNT) [14, 15] are extremely attractive due

to their outstanding properties. But CNT themselves cannot

offer the capacitance performance and the specific capacitance

(Csp) of their composite materials based SCs are low (190 and

120 F/g [10, 11]). Although the high Csp value of 3-dimen-

tional CNT/graphene based SCs was obtained by Fan et al.

(385 F/g at 10 mV/s) [16] and Yang et al. (326 F/g at 20 mV/s)

[17], several problems still need to be addressed in terms of

complicated synthesis procedures, waste of time and require-

ment of high temperatures. Conducting polymers [18, 19], and

metal oxides [20–22] could be served as fillers and simulta-

neously enhanced the Csp value. But the capacitance of the

composites based SCs would easily decay, due to the volume

change and ion dissolution during charge/discharge processes.

Chen et al. [23] used organic amine as spacers and nitrogen

sources, which could form electrochemical active groups and

provide the pseudo-capacitance. However, the Csp is only

190.1 F/g. Ai et al. [24] reported an efficient method for the

synthesis of covalently functionalized graphene materials,

with less aggregation and abundant redox active azole func-

tional groups and higher Csp (730 F/g at 0.1 A/g), but the Csp

value has a sharp decrease with the current density enhanced,

which is 296 F/g at 0.8 A/g and only 40 % is retained, indi-

cating the rate capability couldn’t satisfied to the applications.

In this study, p-phenylenediamine (PPD) functionalized

graphene oxide (GO) composite materials (PPDG) were

obtained through one-pot solvothermal process. On one

hand, PPD molecules could insert the space in between the

graphene sheets through the reactions of –NH2 on the para-

position of benzene ring and the different graphene sheets,

respectively (Fig. 1). Thus PPD molecules are as spacers to

control the aggregation and restacking of graphene sheets

and formed loose layered structures, which is favorable to the

diffusion of electrolyte ion, leading to a great improvement

of the electrochemical performance for SCs. On the other

hand, PPD molecules can serve as nitrogen dopants to realize

nitrogen doping, which further enhanced the performance of

the electrode materials. The PPDG based SCs (PPDG-SCs)

exhibit ultrahigh Csp value of 313 F/g at 0.1 A/g in 6 mol/L

KOH aqueous solution, superior rate capability and cycling

stability. The materials may have potential applications as

ultrahigh performance SCs.

2 Experimental

2.1 Materials synthesis

GO and PPDG was synthesized according to our previous

reported method [25, 26]. Typically, PPD ethanol solution

(10 mg/mL) was added to 40 mL GO aqueous solution

(4 mg/mL). The mixture solution was ultrasonicated for

0.5 h and then transferred to a 100 mL autoclave. Solvo-

thermal reaction was at 180 �C for 12 h. The autoclave was

then naturally cooled to room temperature. The product

was washed several times with ethanol and acetone by

filtrate. Finally, the sample was dried in a vacuum oven at

120 �C for 12 h. For comparison, reduced GO (RG) was

also prepared under the same experimental parameters but

without adding PPD.

2.2 Characterization

The morphology of the products was investigated by a field

emission scanning electron microscopy (FE-SEM, LEO

1530 VP) and high resolution transmission electron

microscopy (TEM, JEOL TEM-2100). Raman scattering

was carried out on a Renishaw inVia Raman spectrometer

using laser excitation at 633 nm. Fourier transform infrared

(FT-IR) spectra were recorded on a Bruker Tensor 27

spectrometer (Germany). X-ray photoelectron spectroscopy

(XPS) analysis was performed using AXIS HIS 165 spec-

trometer (Kratos Analytical) with a monochromatized Al

Ka X-ray source (1486.71 eV photons).

2.3 Fabrication of supercapacitors and electrochemical

measurements

The SCs test cells were fabricated according to our

reported method [27, 28]. The electrode materials were

prepared by mixing PPDG or RG, carbon black and poly-

tetrafluoroethylene at the weight ratio of 85:5:10. The

mixture was homogenized and then was rolled into

80–120 lm thickness sheets and punched into 13 mm

diameter, and was dried at 120 �C for 6 h under vacuum.

The Ni foam was as the current collector, the cellulose film

was as the separator and 6 mol/L KOH aqueous solution

Fig. 1 (Color online) Schematic illustration for the synthesis of RG

and PPDG materials
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was used as electrolyte. The CV curves were studied with a

LK98B II microcomputer-based electro-chemical analyzer

(LANLIKE). The galvanostatic charge/discharge was per-

formed with a supercapacitor tester (Arbin MSTAT, USA).

Electrical impedance spectroscopy (EIS) studies were

obtained by a frequency response analysis of the frequency

range from 10 mHz to 100 kHz using Autolab (Metrohm).

The Csp value was calculated according to our previous

reported method [29].

3 Results and discussion

The morphology of RG and PPDG was characterized by

SEM and TEM. As shown in Fig. 2a, the SEM image ofRG

shows a tight aggregated structure. However PPDG has an

extremely loose layered and silk-like structure (Fig. 2b),

indicating the effectiveness of PPD for the prevention of

restacking of graphene sheets, supporting the below XRD

results. This structure of PPDG should be available to the

diffusion of electrolyte ion not only in the outer region of

the graphene but also the inner region. So both sides of a

broad range of graphene sheets could be exposed to the

electrolyte and thus contribute to the capacitance. The

nitrogen content was studied by energy dispersive spec-

troscopy (EDS) and it reaches as high as 10.85 at.%. The

nitrogen distribution in PPDG was confirmed by elemental

mapping by SEM (Fig. 2d) and the results show that the

whole basal plane of graphene sheets contain a large

amount of nitrogen with a uniform distribution density,

indicating a homogenous reaction between GO and PPD.

The TEM characterization result (Fig. 3a) demonstrates the

PPDG has ultra-thin sheet-like, crumpled and flexible

structure.

To investigate the chemical structure of PPDG, Raman,

FT-IR and XPS analyses of RG and PPDG were performed.

The Raman spectra of RG and PPDG (Fig. 3b) display two

peaks at 1324 and 1581 cm-1, corresponding to the D and

G bands respectively [30]. The ID/IG ratio is associated

with disordered structures. As shown in Fig. 3b, after GO

was functionalized with PPD, the ID/IG ratio increased

from 0.95 for RG to 1.08 for PPDG, which can be ascribed

to the increased defect sites created on graphene upon

nitrogen doping [31, 32]. The FT-IR spectra of RG and

PPDG were shown in Fig. 3c. For RG, the adsorption band

appear at 1724, 1567 and 1201 cm-1, corresponding to the

Fig. 2 (Color online) SEM images of (a) RG; (b, c) PPDG and (d) nitrogen mapping image of PPDG for (c)
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carbonyl stretching mode, C=C stretching vibration of

benzene bring and the breathing vibration mode of the

epoxy groups, respectively [33]. However, in the spectrum

of PPDG, the peaks at 1724 cm-1 disappear, which may be

explained that the oxygen containing functional groups in

GO would react with the –NH2 in PPD to generate other

covalent bonds. Moreover, a new peak at 1388 cm-1 is

observed, which is attributed to the stretching mode of C–N

and C=N bonds [34]. Furthermore, the peaks at around

1100 cm-1 results from the stretching of C–N bonds and

the residual C–O groups [35]. XPS was then underutilized

to determine the configurations of nitrogen in PPDG,

shown in Fig. 4. The full range XPS of RG (Fig. 4a)

reveals the presence of C1s (284 eV) and O1s (532 eV),

while in the spectrum of PPDG, the peak of N1s (399 eV)

was presence, indicating the nitrogen had introduced to the

graphene sheets. The high-resolution of C1s spectrum of

RG shows three different peaks (Fig. 4b). The peaks at

Fig. 3 (Color online) (a) TEM image of PPDG; (b) Raman spectra of RG and PPDG and (c) FT-IR spectra of RG and PPDG

Fig. 4 (Color online) XPS spectra of (a) Survey spectra of RG and PPDG; (b) High resolution C1s spectra of RG and (c) PPDG; (d) N1s spectra

of PPDG
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284.8, 286.2 and 289.0 eV correspond to the sp2 carbon

(C=C), C–OH and O–C=O, respectively [19]. While in the

high-resolution of C1s spectrum of PPDG (Fig. 4c), the

appearance of a new peak at 285.7 eV (C=N) further

confirms the presence of nitrogen in the graphene sheets

[36]. The bonding configurations of nitrogen atoms in

PPDG were further investigated by high-resolution N 1s

XPS spectra (Fig. 4d), showing three different types of

nitrogen atoms with binding energies of 398.7, 399.4 and

400.2 eV, which is attributed to pyridinic nitrogen, amine

moieties or other sp3-C and nitrogen bonds and pyrrolic

nitrogen, respectively [37].

In order to investigate the electrochemical performance of

PPDG materials, a two-electrode cell with a symmetrical

configuration was performed. The electrochemical properties

of PPDG-SCs with the contrastive one’s (RG-SCs) were

analyzed by CV and galvanostatic charge/discharge tech-

niques. Figure 5a shows the CV curves of RG-SCs at scan

rate of 10 mV/s and PPDG-SCs at the scan rates of 10, 20 and

50 mV/s in 6 mol/L KOH aqueous electrolyte. Obviously, a

much higher capacitive response of PPDG-SCs is observed,

suggesting that the electrochemical activity of graphene

materials is increased after functionalization by PPD.

Moreover, in contrast with the pure capacitive current back-

ground in CV curve of RG-SCs, the Faradic redox peaks of

PPDG-SCs appear, whatever at low or high scan rates, which

may correspond to the redox reactions of the electrochemi-

cally active functional groups, including pyridinic nitrogen

and pyrrolic nitrogen groups on the functional graphene

sheets. The galvanostatic charge/discharge curves of PPDG-

SCs at different current densities were shown in Fig. 5b. The

Csp value for PPDG-SCs is 313 F/g at a constant current of

0.1 A/g, which is much higher than that of RG-SCs (210 F/g).

Furthermore, PPDG-SCs also display a superior rate capa-

bility (Fig. 5c). The electrochemical impedance spectros-

copy (EIS) was also performed. As shown in Fig. 6a, the

Nyquist plots of both RG-SCs and PPDG-SCs have the lower

equivalent series resistance (ESR, intercept on the x axis) at

high frequency, which represents that the intrinsic internal

resistance of the electrode materials and electrolyte of RG-

Fig. 5 (Color online) Electrochemical performance of the SCs: (a) CV curves of RG-SCs measured at the scan rate of 10 mV/s and PPDG-SCs

measured at the scan rates of 10, 20 and 50 mV/s in the potential range of 0-1.0 V; (b) Galvanostatic charge/discharge curves for PPDG-SCs

tested at current densities from 0.1 to 1 A/g; (c) Rate performances of PPDG-SCs and RG-SCs

Fig. 6 (Color online) (a) Nyquist impedance plots of RG-SCs and PPDG-SCs; (b) cycling stabilities for PPDG-SCs charge-discharged after

3000 cycles, measured at a current density of 1 A/g within the potential range from 0 to 1.0 V
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SCs and PPDG-SCs are small [25]. However, compared with

the RG-SCs, the PPDG-SCs exhibit a much smaller the radius

of semicircle plotted at the high to mid frequency region,

indicating the lower charge-transfer resistance and better

conductivity of PPDG materials [38], which may contributed

by the loose layer graphene structures. Cycling performance

of the PPDG-SCs was evaluated using galvanostatic charge/

discharge technique at a current density of 1.0 A/g (Fig. 6b).

As can be seen, PPDG-SCs exhibit only 15 % deterioration of

the initial Csp after 3000 cycles, indicating the good cycling

stabilities. The excellent electrochemical performance of

PPDG-SCs could be ascribed to the morphology and structure

of PPDG. On one hand, the PPD molecules, using as spacers,

could prevent GO restacking in the solvothermal process and

form the loose layered structure, which are favorable for the

electrolyte penetration and accelerate the kinetic process of

the ion diffusion and enhance the performance. One the other

hand, nitrogen-doped graphene, with abundant pyridinic and

pyrrolic structures, which could provide the pseudo-capaci-

tance, could be obtained through the introduction of PPD. So

the unique structures endow rapid transport of the electrolyte

ions and simultaneously utilize the pseudo- and double layer

capacitance.

4 Conclusions

We have prepared PPD functionalized graphene materials

with loose layered structures and nitrogen doping through

one-pot solvothermal process. The pyridinic nitrogen and

pyrrolic nitrogen formed in the doping process. Because of

their less aggregated and loose layered structures, high

content of nitrogen atoms and appropriate nitrogen species,

the prepared materials display a high Csp up to 313 F/g in

addition to maintaining excellent rate capability and

cycling stability. Therefore, the PPDG materials could be

applied for high-performance SCs.
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