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Design and synthesis of low band gap non-fullerene
acceptors for organic solar cells with impressively
high Jsc over 21 mA cm−2

Huan-Huan Gao, Yanna Sun, Xiangjian Wan*, Bin Kan, Xin Ke, Hongtao Zhang, Chenxi Li and
Yongsheng Chen*

ABSTRACT Three low bandgap non-fullerene acceptors
based on thieno[3,2-b]thiophene fused core with different
ending groups, named TTIC-M, TTIC, TTIC-F were designed
and synthesized. Using a wide bandgap polymer PBDB-T as
donor to form a complementary absorption in the range of
300–900 nm, high efficencies of 9.97%, 10.87% and 9.51% were
achieved for TTIC-M, TTIC and TTFC-F based photovoltaic
devices with impressively high short circuit current over
21 mA cm−2.

Keywords: A-D-A type, non-fullerene acceptors, low bandgap,
high short circuit current values

INTRODUCTION
Fullerene derivatives as the acceptor materials have been
widely used in organic solar cells (OSCs) [1–5] and power
conversion efficiencies (PCEs) over 10% have been
achieved thanks to the new donor materials design and
device optimizations [6–8]. Recently, non-fullerene ac-
ceptors (NFAs) have challenged the fullerene derivatives
dominated positions owing to the easily tuned energy
levels, broadened absorptions and facile synthesis process
[9–14]. It is worthy to note that PCEs over 12% have been
realized for the non-fullerene based OSCs, which opens a
very promising avenue [15,16].

Presently, the mostly successful non-fullerene acceptors
are the small molecules with acceptor-donor-acceptor (A-
D-A) structure, in which conjugated fused units are em-
ployed as the central building blocks and electron with-
drawing groups, mostly 3-(dicyanomethylidene)-indan-1-
one and its derivatives are used as the end units [10].
Their properties such as the energy levels and absorp-
tions. could be tuned through the delicate chemical

structure design [17,18]. For example, 4,9-dihydro-s-in-
daceno[1,2-b:5,6-b']-dithiophene (IDT)[19–21] and 6,12-
dihydro-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']
dithiophene (IDTT)[10,18] were used as the central
building blocks to construct the A-D-A NFAs such as
ITIC [10], ITIC-Th [22] and IT-M [21,23], etc. with 3-
(dicyanomethylidene)-indan-1-one and its derivatives as
the end groups, and PCE over 11% have been achieved.

On the other hand, in order to achieve high photo-
voltaic performances, it is essential for the donor or ac-
ceptor materials to have complementary absorptions
covering the visible light to the near-infrared region in
order to get high short circuit current (Jsc) values. To this
end, the strategy of using wide bangap donor materials
and low bandgap acceptor materials to blend as the active
layers has been proved to be an efficient way [21,24].
Recently, the low band gap NFAs such as IEICO [24], IT-
4F [16], INIC3 [25], etc. have been reported and gave
high PCEs over 10% with Jsc over 19 mA cm−2.

Recently, our group reported NFA FDICTF [26] and
NFBDT [27] by fusing fluorene or BDT units with ad-
jacent thiophenes. In contrast to the unfused counter-
parts, the two NFAs showed red shifted absorptions and
balanced charge mobilities after blending with the donor
materials and PCE over 10% was achieved.

Thieno[3,2-b]thiphene (TT) has been widely used in
OSC partially due to a stable quinoid structure, the strong
electron-donating ability and the coplanar structure
[28,29]. Herein we utilized the thieno[3,2-b]thiphene as
the central building block fused with another two thio-
phene units by the sp3 carbon linked with four 4-hex-
ylbenzene groups to improve the solubility and inhibit the
molecular excessive aggregation [30–32]. With the above
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thieno[3,2-b]thiphene and thiophene fused unit as the
core, three NAFs named TTIC-M, TTIC, TTIC-F were
prepared with 3-(dicyanomethylidene)-indan-1-one and
its two derivatives substituted with methyl or fluorine as
the end groups (Fig. 1). The purpose of introducing the
methyl and fluorine substituted indanone groups with
electron pushing and pulling abilities is to subtly tune the
energy levels and absorptions and investigate the effects
on photovoltaic performances. As expected, TTIC-M,
TTIC and TTIC-F exhibit near-infrared absorptions with
maximum absorption (λmax) of 783, 820 and 828 nm in the
thin films (Fig. 2) and low optical bandgaps of 1.44, 1.38
and 1.35 eV, respectively. For device fabrication, a widely
used wide bandgap polymer donor poly[(2,6-(4,8-bis(5-
(2-ethylhexyl)thiophen-2-yl)benzo[1,2b:4,5b']dithio-

phene)-alt-(5,5-(1',3'-di-2-thienyl-5',7')-bis(2-ethylhexyl)-
benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione)] (PBDB-T)
[33] was selected as the donor material. The optimized
PCEs of 9.97%, 10.87% and 9.51% were obtained for
TTIC-M, TTIC and TTIC-F based devices with im-
pressively high Jsc of 19.07, 20.58 and 21.26 mA cm−2,
respectively. It is worthy to note that Wang et al. [34]
reported the molecule TTIC with the PCE of 9.77% with
PTB7-Th as donor material when we were preparing this
manuscript.

The detailed synthesized routes are shown in Scheme 1
and the corresponding characterization data are shown in
the Supplemenary information (SI). The related 1H NMR,
13C NMR spectrum and HR-MS mass spectrometry also
attached in the SI. All of the TTIC-M, TTIC and TTIC-F
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Figure 1 Chemical structure of PBDB-T and three non-fullerene acceptors.
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Figure 2 UV-vis spectra of TTIC-M, TTIC and TTIC-F in the dilute chloroform solution (a) and thin films.
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exhibit preferable thermal stability up to 370, 350 and
350°C under nitrogen atmosphere by thermogravimetric
analysis (TGA) (Fig. S1).

EXPERIMENTAL SECTION

Materials
All reagents and solvents were purchased from commer-
cial corporation and used without further purification. All
the reactions and manipulations were carried out under
the protection of argon. The polymer donor PBDB-T was
purchased from 1-Material Inc.

Synthesis
The intermediate 1 was synthesized according to the re-
ported literature [35]. Compound 1 was processed with
hexylbenzene Grignard reagent and then reacted with
trifluoromethanesulfonic acid as the catalyst to achieve
the cyclization intermediate 2. Compound 3 was obtained
from synthon 2 via Vilsmeier-Haack reaction. Then the
target acceptor materials were synthesized from the pre-
cursor 3 with subsequent Knovenagel condensation.

Synthesis compound 2
Under argon, hexylbenzene (1.613 g, 6.690 mmol), a small

quantity of iodine, and magnesium chips (267 mg, 11.13
mmol) were dissolved in anhydrous tetrahydrofuran
(THF) (10 mL). The reaction was triggered by blower and
stirred at room temperature for ten minutes. Then the 4-
n-hexylphenyl magnesium bromide synthesized above
was added into the reaction system of 1 (500 mg, 1.115
mmol) in anhydrous THF (20 mL) dropwise under argon.
The reaction was refluxed for another 12 h. The reaction
solution was washed with brine for three times and dried
over anhydrous Na2SO4. The solvent was removed under
vacuum. The crude product was dissolved in 1,2-di-
chloroethane (30 mL) and three drops of tri-
fluoromethanesulfonic acid was added as the catalyst. The
reaction solution was stirred at 65°C for 30 min and
quenched with 10 mL ice water and washed with water for
four times. The solvent was removed under vacuum, and
the crude product was purified by column chromato-
graphy using CH2Cl2/PE (1:40) as the eluent to give
compound 2 as a yellow solid (60%). 1H NMR (400 MHz,
CDCl3) δ 7.17–7.13 (m, 10H), 7.08–7.05 (m, 10H), 2.54 (t,
8H), 1.59–1.53 (m, 8H), 1.30–1.25 (m, 24H), 0.88–0.84
(m, 12H). 13C NMR (101 MHz, CDCl3) δ 157.00, 148.41,
141.75, 139.87, 137.11, 136.85, 134.91, 128.50, 127.80,
125.26, 123.27, 61.91, 35.61, 31.73, 31.30, 29.17, 22.61,
14.12. HR-MS (MALDI): m/z [M]+ calcd. for C64H72S4,
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Scheme 1 The synthetic routes of TTIC-M, TTIC and TTIC-F.
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968.4517; found, 968.4518.

Synthesis of compound 3
Under argon, anhydrous N,N-dimethylformamide (3 mL)
was added. Then anhydrous phosphorus oxychloride
(POCl3) (200 μL) was injected into the reaction system
dropwise in the ice-water bath. The reaction mixture was
stirred under 0°C for another 30 min, and then stirred at
room temperature for 3 h to gain the Vilsmerier reagent.
A solution of 2 in 1,2-dichloroethane (DCE, 80 mL) was
degassed with argon for 15 min and then the Vilsmerier
reagent was added into the reaction slowly and stirred at
room temperature for 1 h. The reaction solution was
stirred at 85°C for another 12 h. 20 mL saturated sodium
acetate solution was added slowly to quench the reaction.
The reaction solution was washed with water for three
times and dried over anhydrous Na2SO4. The solvent was
removed under vacuum, and the crude product was
purified by column chromatography using CH2Cl2/PE
(1:1) as the eluent to give compound 3 as a yellow solid
(90%). 1H NMR (400 MHz, CDCl3) δ 9.80 (s, 2H), 7.68 (s,
2H), 7.12 (s, 16H), 2.58–2.54 (m, 8H), 1.60–1.55 (m,
12H), 1.30–1.26 (m, 20H), 0.86 (t, J = 6.8 Hz, 12H). 13C
NMR (101 MHz, CDCl3) δ 182.47, 157.98, 152.37, 146.96,
144.26, 142.62, 138.27, 138.15, 137.63, 131.65, 128.88,
127.56, 62.30, 35.58, 31.69, 31.26, 29.10, 22.59, 14.09. HR-
MS (MALDI): m/z [M]+ calcd. for C66H72O2S4, 1024.4415;
found, 1024.4403.

Synthesis of TTIC
A mixture of compound 3 (100 mg, 0.0975 mmol), 3-
(dicyanomethylidene)-indan-1-one (56 mg, 0.288 mmol)
in chloroform 30 mL under argon was stirred at room
temperature for 12 h. The organic phase was washed with
water for three times and dried over anhydrous Na2SO4.
The solvent was removed under vacuum, and the crude
product was purified by column chromatography using
CF/PE (1:1) as the eluent to give compound TTIC as a
green solid (85%). 1H NMR (400 MHz, CDCl3) δ 8.86 (s,
2H), 8.68 (dd, J = 6.3, 1.5 Hz, 2H), 7.92–7.88 (m, 2H),
7.78–7.72 (m, 4H), 7.71–7.69 (m, 2H), 7.14 (s, 16H), 2.58
(t, 8H), 1.63–1.55 (m, 12H), 1.32–1.27 (m, 20H), 0.89–
0.84 (m, 12H). 13C NMR (101 MHz, CDCl3) δ 188.50,
160.33, 159.52, 155.48, 154.52, 151.27, 142.91, 140.52,
140.14, 140.00, 139.74, 139.61, 138.69, 137.94, 137.79,
136.82, 135.01, 134.29, 129.04, 127.58, 125.24, 123.65,
121.39, 114.88, 114.84, 77.33, 77.01, 76.69, 62.25, 35.59,
31.68, 31.23, 29.09, 22.58, 14.08. HR-MS (MALDI): m/z
[M]+ calcd. for C90H80N4O2S4, 1376.5164; found,
1376.5165.

Synthesis of TTIC-M
The synthetic procedure was the same as TTIC. And the
crude product was purified by column chromatography
using CF/PE (1:1) as the eluent to give TTIC-M as a green
solid (80%). 1H NMR (400 MHz, CDCl3) δ 8.83 (s, 2H),
8.54 (d, J = 8.1 Hz, 1H), 8.46 (s, 1H), 7.79 (d, J = 7.7 Hz,
1H), 7.68 (s, 3H), 7.53 (t, J = 7.0 Hz, 2H), 7.14 (s, 16H),
2.58 (t, 8H), 2.55–2.51 (m, 6H), 1.66–1.53 (m, 12H), 1.31–
1.26 (m, 20H), 0.89–0.83 (m, 12H). 13C NMR (101 MHz,
CDCl3) δ 188.27, 160.46, 159.36, 154.30, 146.59, 146.06,
142.86, 140.40, 140.04, 139.58, 138.46, 137.87, 137.64,
137.18, 135.88, 135.29, 134.69, 129.02, 127.59, 125.61,
125.19, 123.55, 121.94, 115.01, 114.95, 77.34, 77.23, 77.02,
76.70, 62.22, 35.60, 31.69, 31.25, 29.10, 22.59, 22.07, 14.10.
HR-MS (MALDI): m/z [M]+ calcd. for C92H84N4O2S4,
1404.5477; found, 1404.5492.

Synthesis of TTIC-F
The synthetic procedure was the same as TTIC. The
crude product was purified by column chromatography
using CF/PE (1:1) as the eluent to give TTIC-F as a green
solid (90%). Since the effect of fluorine atom, we have not
got the 13C NMR spectrum. 1H NMR (400 MHz, CDCl3) δ
8.87 (s, 2H), 8.38 (d, J = 8.9 Hz, 2H), 7.96–7.87 (m, 2H),
7.76–7.71 (m, 2H), 7.46–7.39 (m, 2H), 7.16 (s, 16H), 2.61
(t, 8H), 1.64–1.58 (m, 12H), 1.31–1.28 (m, 20H), 0.91–
0.86 (m, 12H). HR-MS (MALDI): m/z [M]+ calcd. for
C90H78F2N4O2S4, 1412.4976; found, 1412.5003.

Fabrication of OSCs
The indium tin oxide (ITO)-coated glass substrates were
cleaned by ultrasonic treatment in detergent, deionized
water, acetone, and isopropyl alcohol under ultrasonica-
tion for 15 min each and subsequently dried by nitrogen
blow. A thin layer of PEDOT:PSS (Clevios P VP AI 4083,
filtered at 0.45 μm) was spin-coated at 3000 rpm onto the
ITO surface. After being baked at 150°C for 20 min, the
substrates were transferred into an argon-filled glovebox.
The donor material PBDB-T and the acceptor materials
TTIC-M, TTIC and TTIC-F were dissolved in chlor-
obenzene to generate 20 mg mL−1 blend solutions with
the donor/acceptor weight ratio of 1:1. In fabrication, the
active layer was exposed to chloroform vapor for 90 s to
optimize the morphology. A thin layer of PDINO and an
80 nm Al layer were deposited on the active layer under
high vacuum (<2 × 10−4 Pa).

Characterization and measurements
The 1H and 13C nuclear magnetic resonance (NMR)
spectra were taken on a Bruker AV400 Spectrometer. The
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HR-MS data were recorded on Varian 7.0T FT-MS. The
TGA was carried out on a NETZSCH STA 409PC in-
strument under purified nitrogen gas flow with a heating
rate of 15°C min−1, UV–vis spectra were obtained with a
JASCO V-570 spectrophotometer. Photoluminescence
(PL) spectra were measured with a FL-4600 fluorescence
spectrometer (Hitachi, Japan) equipped with a plotter
unit. Cyclic voltammetry (CV) experiments were per-
formed with a LK98B II microcomputer-based Electro-
chemical Analyzer. All CV measurements were carried
out at room temperature with a conventional three-elec-
trode configuration employing a glassy carbon electrode
as the working electrode, a saturated calomel electrode
(SCE) as the reference electrode, and a Pt wire as the
counter electrode. Dichloromethane was distilled from
calcium hydride under dry nitrogen immediately prior to
use. Tetrabutylammonium phosphorus hexafluoride
(Bu4NPF6, 0.1 mol L−1) in dichloromethane was used as
the supporting electrolyte; the scan rate was 100 mV s−1.
Atomic force microscopy (AFM) was performed using a
MultiMode 8 atomic force microscope in tapping mode.
Space-charge-limited-current (SCLC) mobility was mea-
sured using a diode configuration of ITO/PEDOT:PSS/
PBDB-T:acceptor/Au for hole and Al/PBDB-T:acceptor/
Al for electron by taking the dark current density in the
range of 0–2 V and fitting the results to a space charge
limited form, where the SCLC is described by:

J
µ V
L

=
9

8
,0 r 0

2

3

where J is the current density, L is the film thickness of
the active layer, μ0 is the hole or electron mobility, εr is the
relative dielectric constant of the transport medium, ε0 is
the permittivity of free space (8.85 × 10−12 F m−1), V (=
Vappl− Vbi) is the internal voltage in the device, where Vappl

is the applied voltage to the device and Vbi is the built-in
voltage due to the relative work function difference of the
two electrodes. The current density-voltage (J-V) curves
of photovoltaic devices were obtained by a Keithley 2400
source-measure unit. The photocurrent was measured
under illumination simulated 100 mW cm−2 AM 1.5G ir-
radiation using a xenon-lamp-based solar simulator

[SAN-EI XES-70S1 (AM 1.5G)] in an argon filled glove-
box. External quantum efficiencies (EQE) were measured
using Stanford Re-search Systems SR810 lock-in ampli-
fier.

RESULTS

Photophysical and electrochemical properties
The UV-vis absorption spectra in dilute chloroform so-
lution and thin films are shown in Fig. 2 and the corre-
sponding photophysical data are summarized in Table 1.
As shown in Fig. 2a, TTIC-M, TTIC and TTIC-F in their
solution all show broad and red-shifted absorption
around 600–800 nm, with the λmax peaks located at 746,
750 and 756 nm and relatively weaker shoulder peaks at
680, 686 and 695 nm, respectively. As for the thin films,
they display evidently broad and red-shifted absorption
peaks at 783, 820 and 828 nm. The polymer donor shows
complementary absorption ranging from 500−750 nm.
The red-shifted absorption properties are mainly attrib-
uted to the strong electron-donating performances of
central core and intense intramolecular charge transfer. In
order to further understand the charge transfer properties
between the donor and acceptor, the PL quenching effect
was tested (Fig. 3) . It is worth noting that all the pure
films based on PBDB-T and TTIC derivatives show clear
PL spectra in the region of 650–800 nm and 800–900 nm,
respectively. While the blend films exhibit strong PL
quenching effect, indicating the efficient photoinduced
charge transfer between the donor and acceptor materials.
CV measurements were performed in dichloromethane
solution and calibrated against ferrocene (4.4 eV below
vacuum), the supporting electrolyte contains 0.1 mol L−1

tetrabutylammonium hexafluorophosphate (TBAPF6),
under a scan rate of 100 mV s–1 (Fig. 4). The highest
occupied molecular orbital (HOMO) and lowest un-
occupied molecular orbital (LUMO) energy levels of
TTIC-M, TTIC and TTIC-F were obtained from the
onset oxidation and reduction potential with values of
−5.30, −5.33, −5.34 and −3.82, −3.87, −3.88 eV, respec-
tively. The HOMO energy levels offset between the three
acceptors and PBDB-T (−5.28 eV) are as low as 0.10 eV

Table 1 Summay of the photophysical and electronic data of TTIC-M, TTIC and TTIC-F

Compound λmax
sol (nm) λmax

film (nm) λedge
film (nm) Eg

opt (eV) HOMO (eV) LUMO (eV) Eg
cv (eV)

TTIC-M 746 783 863 1.44 −5.30 −3.82 1.48
TTIC 750 820 900 1.38 −5.33 −3.87 1.46
TTIC-F 756 828 916 1.35 −5.34 −3.88 1.46
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(0.02, 0.05 and 0.06 eV, respectively), suggesting small
ΔEH is not the necessary restriction for the non-fullerene
OSC as evidenced below.

DFT calculation
Density functional theory (DFT) calculations at the

B3LYP/6-31G(d) level were performed to further in-
vestigate the electron distribution and geometry of the
three acceptors. The hexyl groups were replaced by me-
thyl to simplify computational process. Like other NFAs
cases, the electron cloud densities of HOMO and LUMO
are mainly localized at the central fused donor cores and
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the acceptor end groups, respectively (Fig. 5).

OSCs performances
Based on the discussion in the UV-vis section, we selected
PBDB-T as the donor material to fabricate bulk hetero-
junction (BHJ) OSCs with a conventional structure of
ITO/PEDOT:PSS/PBDB-T:acceptor/PDINO/Al. The
thickness of PDINO ETL was tested to be 14 nm. In order
to obtain the optimized device performances, different
additives such as 1.8-diiooctane (DIO), methylnaphtha-
lene (CH3–N) and chloronaphthalene (CN) and solvent
vapor annealing (SVA) were tested and the photovoltaic
data and AFM images were summarized in SI. The opti-
mized photovoltaic parameters were summarized in Table
2. The J-V curves of the optimized devices were shown in
Fig. 6a. After device optimizations, especially with SVA
treatments, TTIC-M, TTIC and TTIC-F based devices
gave high PCEs of 9.97%, 10.87% and 9.51%, respectively.
Impressively high Jsc with values of 19.07, 20.50 and
21.26 mA cm−2 were obtained for TTIC-M, TTIC and
TTIC-F based devices, which was contributed to the
complementary and broad absorptions of donor polymer
and the NFAs in the range of 300 to 900 nm. In addition,
after introduction of methyl and fluorine in the end
groups, the Voc increased (0.83 V) and decreased (0.71 V)
in comparison with that of TTIC (0.80 V), which was

consistent with the variation tendency of the LUMO en-
ergy levels of the acceptors. Meantime, the photon energy
loss (Eloss) was calculated using the formula Eloss = Eg −
eVoc. The Eloss values of the OSCs are 0.58−0.64 eV, which
are relatively small in OSC devices. EQE spectra were
used to further explain the Jsc values. These devices all
show high photoelectron conversion efficiency ranging
from 300–900 nm (Fig. 6b), suggesting the com-
plementary absorption properties between the PBDB-T
donor and ITIC derivatives.

Mobility
The hole and electron mobility were measured by the
SCLC method (Fig. 7) and the mobility data were sum-
marized in Table 3. After SVA for 90 s, TTIC-M, TTIC
and TTIC-F all possess high hole and electron mobility
0.87 × 10−4/0.86 × 10−4, 1.63 × 10−4/1.61 × 10−4 and 1.29 ×
10−4/1.38 × 10−4 cm2 V−1 s−1 with a μh/μe ratio of 1.01, 1.01
and 0.93, respectively. The relatively high and balanced
charge transport properties bring the higher FF and Jsc
values.

Film morphology
AFM was utilized to investigate the surface morphology
of the blend films under tapping-mode (Fig. 8). After
SVA, the blend films show suitable root-mean-square

Table 2 Photovoltaic parameters of the BHJ solar cells based on PBDB-T and the three non-fullerene acceptors

Compound Voc (V) Jsc
J-V (mA cm−2) Jsc

EQE (mA cm−2) FF PCEc (%)

TTIC-M
0.83a 18.36a 0.56a 8.39 ± 0.14 (8.53)a

0.83b 19.07b 17.58 0.63b 9.85 ± 0.12 (9.97)b

TTIC
0.81a 18.78a 0.63a 9.41 ± 0.17 (9.58)a

0.80b 20.58b 19.37 0.66b 10.73 ± 0.14 (10.87)b

TTIC-F
0.72a 19.11a 0.59a 7.92 ± 0.16 (8.08)a

0.71b 21.26b 19.31 0.63b 9.38 ± 0.13 (9.51)b

a) The devices without post process. b) SVA for 90 s. c) The PCE values were measured from 30 devices and the highest PCE were in parentheses.
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(RMS) roughness of 2.78, 3.39 and 3.95 nm, respectively.
As shown in the AFM and the corresponding transmis-
sion electron microscopy (TEM) images, they all show
good phase separation with appropriate domain size.
From the TEM images, the nanoscale wormlike domain
can be observed in the film with SVA, which is beneficial

for obtaining high Jsc and FF.

CONCLUSIONS
In summary, three NFAs with near-infrared absorptions,
TTIC-M, TTIC and TTIC-F were synthesized and used
in OSCs devices. Blending with a wide band gap donor
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Figure 7 The hole (a) and electron (b) mobilities.

Table 3 The mobility of TTIC-M, TTIC and TTIC-F devices after SVA for 90 s

Compound μh (10−4 cm−2 V−1 s−1) μe (10−4 cm−2 V−1 s−1) μh/μe

TTIC-M 0.87 0.86 1.01
TTIC 1.63 1.61 1.01
TTIC-F 1.29 1.38 0.93

0.0 Height 5.0 µm 0.0 Height 5.0 µm 0.0 Height 5.0 µm

11.0 nm

−11.0 nm −14.0 nm −14.5 nm

14.5 nm14.0 nm

200 nm 200 nm 200 nm

a b c

d e f

Figure 8 The AFM images of the blend films PBDB-T/TTIC-M (a), TTIC (b) and TTIC-F (c) with SVA for 90 s and the TEM images below (d, e, f).
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polymer PBDB-T with a complementary absorption,
TTIC-M, TTIC and TTIC-F based devices give high
PCEs of 9.97%, 10.87% and 9.51%, respectively, with the
impressively high Jsc over 21 mA cm−2. In addition, the Voc

of the devices could be tuned by subtly changing the
molecular LUMOs through the end groups chemical en-
gineer. It is believed that higher efficiencies could be
obtained based on the above reported NFAs and their
derivatives through further material design and device
optimizations.
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窄带系非富勒烯受体用于有机太阳电池获得超过21 mA cm−2的短路电流密度
高欢欢, 孙延娜, 万相见*, 阚斌, 柯鑫, 张洪涛, 李晨曦, 陈永胜*

摘要 本文设计合成了基于噻吩[3,2b]噻吩稠环受体具有不同末端基团的三个窄带系非富勒烯受体TTIC-M, TTIC和TTIC-F. 采用宽带隙
聚合物PBDB-T为给体在300–900 nm光谱范围内形成了互补光吸收, 基于TTIC-M, TTIC和TTIC-F的光伏器件分别获得了高达9.97%,
10.87%和9.51%的效率和高达21 mA cm−2的短路电流密度.
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