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A-D-A-type small molecular acceptor with one
hexyl-substituted thiophene as π bridge for
fullerene-free organic solar cells
Yongtao Liu1, Hongtao Zhang1,2*, Yanna Sun1,2, Xiangjian Wan1,2 and Yongsheng Chen1,2

ABSTRACT  An A-D-A-type small molecule, DCF-2HT,
was synthesized using fluorene as the central block and
2-(2,3-dihydro-3-oxo-1H-inden-1-ylidene)propanedinitrile
as the end groups, with one hexyl-substituted thiophene as
a π bridge, for use as an acceptor material in organic solar
cells. Devices based on DCF-2HT and the polymer donors
PBDB-T or PTB7-Th were fabricated and optimized. Power
conversion efficiencies of 5.71% and 4.83% were obtained
for PBDB-T: DCF-2HT- and PTB7-Th: DCF-2HT-based
devices, respectively.
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INTRODUCTION
Organic photovoltaics (OPVs) constitute a promising solar
energy conversion technology because of their potential
to enable mass production of solution-processed, light-
weight, flexible, and low-cost materials [1,2]. In recent
years, much effort has been focused on developing novel
narrow-bandgap electron donor materials, and power con-
version efficiencies (PCEs) above 10% have been obtained
for single bulk heterojunction (BHJ) organic solar cells
[3–18]. Although fullerene derivatives (such as PC61BM
and PC71BM) are commonly used as electron-acceptor
materials, these acceptor materials have disadvantages
like weak absorption in the visible region, difficulty in
tuning the energy levels, and high production cost [19].
Recently, the use of non-fullerene acceptors, including
prylene-based materials and indacenodithiophene-based
acceptors, has attracted increasing attention for their
breakthrough PCE of more than 10% [20–35]. A general

strategy for designing non-fullerene acceptors with a suit-
able energy level, good electron transport properties, and
strong absorption ability has been developed.

Our group very recently reported a simple small
molecular acceptor called DICTF, with fluorene as the
central block and 2-(2,3-dihydro-3-oxo-1H-inden-1-yli-
dene)propanedinitrile as the end groups. Photovoltaic
devices based on PTB7-Th:DICTF exhibited a high PCE
of 7.93%. Recent studies demonstrated that the side chains
on the thiophene π-conjugated bridge of acceptor ma-
terials play an important role in the molecule packing
behavior, and thus in the active layer morphology and
device performance [36,37]. To investigate the influence
of the alkyl chains on the optical and electrochemical
properties and device performance, we designed the small
molecule DCF-2HT (Scheme 1) by replacing the thiophene
in DICTF with one hexyl chain as a π bridge. The optical
and electrochemical properties as well as the device per-
formance of DCF-2HT were systematically investigated.
PCEs of 5.71% and 4.83% were obtained for devices with
PBDB-T and PTB7-Th, respectively, as the donor and
DCF-2HT as the acceptor.

EXPERIMENTAL SECTION

Materials
All reactions and manipulations were performed under ar-
gon atmosphere using standard Schlenk techniques. All
starting materials were purchased from commercial sup-
pliers and used without further purification. PBDB-T and
PTB7-Th were purchased from 1-Material Inc.
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Scheme 1   Chemical structures of DCF-2HT, PTB7-Th, and PBDB-T.

Synthesis
The synthesis route of DCF-2HT is shown in Scheme 2.
DF-2HT was synthesized using Suzuki coupling reaction.
The intermediate dialdehyde DCHOF-2HT was obtained
by Vilsmeier–Haack reaction. The target molecule (DCF-
2HT) was then prepared by Knoevenagel condensation of
DCHOF-2HT with 2-(2,3-dihydro-3-oxo-1H-inden-1-yli-
dene)propanedinitrile.

Synthesis of compound DCHOF-2HT
A Vilsmeier reagent, which was prepared using POCl3
(1.37 mL, 15.00 mmol) in dimethylformamide (10 mL),
was added to a solution of DF-2HT (2.17 g, 3.00 mmol)
in 1,2-dichloroethane (80 mL) at 0°C. After being stirred
at 65°C for 12 h, the mixture was poured into ice water
(300 mL), neutralized with Na2CO3, and extracted using
dichloromethane. The combined organic layer was washed
with water and brine and dried over Na2SO4. After the
solvent was removed, it was chromatographed on silica gel
using a mixture of dichloromethane and petroleum ether
(1:1) as the eluent to afford DCHOF-2HT (1.65 g, 76%) as
a light yellow powder. 1H NMR (400 MHz, CDCl3): δ 9.89
(s, 2H), 7.80 (d, J = 7.2 Hz, 2H), 7.71 (s, 2H), 7.51–7.45 (m,
4H), 2.75 (t, J = 7.2 Hz, 4H), 2.06 (m, 4H), 1.67–1.00 (m,
40H), 0.86 (m, 6H), 0.80 (t, J = 6.8 Hz, 6H); 13C NMR (100
MHz, CDCl3): δ 182.7, 151.6, 149.1, 141.1, 140.9, 140.3,
138.7, 132.7, 128.3, 123.6, 120.4, 56.4, 40.3, 31.8, 31.6, 30.8,
30.0, 29.7, 29.2, 29.1, 28.9, 24.0, 22.6, 14.0.

Scheme 2   Synthesis route for DCF-2HT.

Synthesis of compound DCF-2HT
DCHOF-2HT (300 mg, 0.385 mmol) and 2-(3-oxo-2,3-di-
hydroinden-1-ylidene)malononitrile (INCN) (600 mg,
0.310 mmol) were dissolved in a dry CHCl3 (50 mL) solu-
tion, and then 1 mL of pyridine was added to the mixture
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under argon and stirred at room temperature for 24 h.
Then, the mixture was poured into water (200 mL) and
extracted using CHCl3. The organic layer was washed with
water and then dried over Na2SO4 and evaporated. The
crude product was purified by silica gel using chloroform
and petroleum ether (4:1) as the eluent to afford DCF-2HT
as a dark blue solid (216 mg, 72%). 1H NMR (400 MHz,
CDCl3): δ 8.88 (s, 2H), 8.71 (d, J = 7.2 Hz, 2H), 7.94 (d, J
= 7.2 Hz, 2H), 7.86 (dd, J = 6.8 Hz, 1.2 Hz, 2H), 7.75–7.80
(m, 6H) 7.60 (d, J = 7.2 Hz, 2H), 7.53 (s, 2H), 2.77 (t, J =
7.2 Hz, 4H), 2.06 (t, J = 7.2 Hz, 4H), 1.09–1.67 (m, 40H),
0.88 (t, J = 6.8 Hz, 6H), 0.80 (t, J = 6.8 Hz, 6H); 13C NMR
(100 MHz, CDCl3): δ 188.3, 160.7, 156.7, 151.7, 147.5,
141.4, 141.3, 140.0, 138.2, 137.0, 135.1, 134.6, 132.7, 122.7,
120.6, 114.6, 114.5, 77.4, 77.0, 76.7, 69.8, 55.6, 40.4, 31.8,
31.6, 29.4, 29.3, 29.2, 22.6, 14.1, 14.0. Anal. Calcd. for
C75H78N4O2S2: C, 79.61; H, 6.95. Found: C, 79.35; H, 7.72.

Fabrication and characterization of organic solar cells
The devices were fabricated with a structure of glass/in-
dium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene)
polystyrene sulfonate (PEDOT:PSS)/donor:accep-
tor/PDIN/Al. The ITO-coated glass substrates were
cleaned with deionized water, acetone, and isopropyl
alcohol under ultrasonication for 15 min each and sub-
sequently dried under a nitrogen flow. A PEDOT:PSS
solution (Baytron P VP AI 4083, filtered at 0.45 μm) was
spin-coated on the ITO substrates. After baking at 150°C
for 20 min, the substrates were transferred into an ar-
gon-filled glove box. Subsequently, the donor:DCF-2HT
active blend layer was spin-coated from a mixed chloro-
form solution. A PDIN solution (1.5 mg mL−1, dissolved
in methanol (0.2% acetic acid)) was spin-coated on top
of the active layers at 3000 rpm. Finally, a 50 nm Al layer
was deposited under high vacuum (<1.5 × 10−4 Pa). The
effective area of each cell (4 mm2) was defined by shadow
masks. The current density–voltage (J–V) curves of the
photovoltaic devices were obtained using a Keithley 2400
source-measure unit. The photocurrent was measured
under simulated 100 mW cm−2 AM 1.5G irradiation pro-
vided by a xenon-lamp-based solar simulator (SAN-EI
XES-70S1 (AM 1.5G)) in an argon-filled glove box. The
external quantum efficiencies (EQEs) were measured using
a Stanford Research Systems SR810 lock-in amplifier.

Measurements and instruments
The 1H and 13C NMR spectra were recorded on a Bruker
AV400 or 600 Spectrometer. Thermogravimetric analysis

(TGA)was performed on aNetzsch STA 409PC instrument
under a purified nitrogen gas flow at a 10°C min−1 heating
rate. UV-vis spectra were obtained using a JASCO V-570
spectrophotometer. Cyclic voltammetry (CV) experiments
were performed using an LK98B II microcomputer-based
electrochemical analyzer. All CV measurements were
made at room temperature with a conventional three-elec-
trode configuration employing a glassy carbon electrode
as the working electrode, a saturated calomel electrode
as the reference electrode, and a Pt wire as the counter
electrode. Dichloromethane was distilled from calcium
hydride under dry nitrogen immediately before use. Tetra-
butylammonium phosphorus hexafluoride (Bu4NPF6, 0.1
mol L−1) in dichloromethane was used as the supporting
electrolyte; the scan rate was 100 mV s−1.

Atomic force microscopy (AFM) was performed using
an MultiMode 8 atomic force microscope in tapping mode.
Transmission electron microscopy (TEM) was performed
using a Philips Technical G2F20 instrument at 200 kV.

The space-charge-limited current (SCLC) mobil-
ity was measured using a diode configuration of
ITO/PEDOT:PSS/PBDB-T:DCF-2HT/Au for holes and
Al/PBDB-T:DCF-2HT/Al for electrons by taking the dark
current density in the range of 0–2 V and fitting the results
to a space-charge-limited form, where the SCLC is given
by:

                              J µ V
L

9
8

0 r 0
2

3
= ,

where J is the current density, L is the film thickness of the
active layer, μ0 is the hole or electron mobility, εr is the rel-
ative dielectric constant of the transport medium, ε0 is the
permittivity of free space (8.85 × 10−12 F m−1), andV (=Vappl

−Vbi) is the internal voltage in the device (Vappl is the voltage
applied to the device, and Vbi is the built-in voltage due to
the work function difference between the two electrodes).

RESULTS

Synthesis and thermal properties
DCF-2HT was synthesized via a simple synthetic route
(Scheme 2). The intermediate DCHOF-2HT was syn-
thesized in 74% yield by a Stille coupling reaction under
argon atmosphere with Pd(PPh3)4 as the catalyst for 24
h. A facile reaction of DCHOF-2HT with the compound
INCN afforded DCF-2HT in 80% yield by Knoevenagel
condensation under argon atmosphere using piperidine as
a catalyst. The TGA plot in Fig. S1 shows good stability for
DCF-2HT with a deposition temperature of 342°C under
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N2 atmosphere.

Optical and electrochemical properties
The solution and normalized thin film optical absorption
spectra of DCF-2HT are shown in Fig. 1a. In dilute chlo-
roform solution with a concentration of 5 × 10−6 mol L−1,
DCF-2HT exhibits an absorption peak at 544 nm with
a maximum absorption coefficient of 8.72 × 104 L mol−1

cm−1. Compared to its absorption in solution, that of the
DCF-2HT film presents a red-shifted maximum absorp-
tion peak at 548 nm. The absorption region of DCF-2HT
was blue-shifted compared with that of DICTF owing to
the introduction of an alkyl side chain in the thiophene
π-conjugated bridge. The optical band gap of DCF-2HT,
estimated from the onset of the film spectrum, is 1.93 eV.
CV was used to investigate the electrochemical properties
of DCF-2HT (Fig. 1b). The potentials were internally
calibrated using the ferrocene/ferrocenium (Fc/Fc+) redox
couple (4.8 eV below the vacuum level). The highest oc-
cupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO) energies were estimated to be
−5.67 and −3.72 eV, respectively, on the basis of the onset
potentials. The HOMO energy level of DCF-2HT (−5.67
eV) is similar to that of DICTF [33]. However, the LUMO
energy level (−3.72 eV) is higher than that of DICTF
(−3.79 eV), which suggests a high Voc in the OPV devices
using DCF-2HT as an acceptor. The electrochemical band
gap of DCF-2HT is 1.95 eV, which is consistent with the
value of the optical band gap. The data for the optical and

electrochemical properties are summarized in Table 1.

Photovoltaic properties
First, we used PTB7-Th as the donor material and
DCF-2HT as the acceptor to fabricate devices with
the normal structure ITO/PEDOT:PSS/PTB7-Th:DCF-
2HT/PDIN/Al. PDIN is a perylene diimide derivative
developed as a cathode interlayer by Li et al. [38]. The
photovoltaic parameters are summarized in Table 2. The
optimized device has a PCE of 4.83%, which is lower than
that of PTB7-Th:DICTF-based devices. However, the
DCF-2HT-based devices show a higher Voc (0.97 V) than
the DICTF-based devices (0.87 V). Considering the rela-
tively high HOMO of PTB7-Th and its absorption overlap
with DCF-2HT, we chose another polymer, PBDB-T, as a
donor to blend with DCF-2HT. After device optimization,
a PCE of 5.71% was obtained. The value is nearly compa-
rable to that of DICTF:PBDB-T devices [39]. Similar to
the above active layer system, the devices with DCF-2HT
had a higher Voc of more than 1 V. The J–V curves of
the devices using PBDB-T as the electron donor material
before and after optimization and the corresponding EQE
spectra are shown in Fig. 2 (the J–V curves of the devices
using PTB7-Th as the electron donor material and the
corresponding EQE spectra are presented in Fig. S2).
The additive N-Ph (1-phenylnaphthalene) was used to
optimize the devices and a 0.5% volume ratio compared to
that of the active layer solution gave the best results. The
improved Voc  is  attributed  to the higher  LUMO of DCF-

Figure 1    (a) Absorption spectra of DCF-2HT in chloroform solution and in the as-cast film; b) CV of DCF-2HT in a dichloromethane solution of 0.1
mol L−1 Bu4NPF6 at a scan rate of 100 mV s−1.

Table 1 Optical and electrochemical data for DCF-2HT

Compound λmax solution (nm) ε solution (mol−1 L−1 cm−1) λmax film (nm) Eg
opt film (eV) Eg

CV (eV) HOMO (eV) LUMO (eV)

DCF-2HT 544 8.7×104 548 1.93 1.95 −5.67 −3.72

DICTFa) 587 9.3×104 624 1.82 1.88 −5.67 −3.79

a) Results from Ref. [33]. 
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Table 2 Device performance parameters for BHJ solar cells based on PBDB-T:DCF-2HT and PTB7-Th:DCF-2HT

Compound Additive Voc (V) Jsc (mA cm−2) FF (%) PCEa),b) (%)

PBDB-T:DCF-2HT 0 1.04 7.13 31.73 2.36 (2.25)

PBDB-T:DCF-2HT 0.5% N-Ph 1.02 11.30 49.50 5.71 (5.56)

PTB7-Th:DCF-2HT 0 0.97 9.29 32.12 2.89 (2.75)

PTB7-Th:DCF-2HT 0.5% N-Ph 0.96 12.43 40.04 4.83 (4.67)

a) The best PCEs. b) Average values of 30 devices are provided in the parentheses. 

Figure 2    (a) J–V curves of devices based on PBDB-T:DCF-2HT (1:1.4, wt/wt) with and without N-Ph; b) EQEs of devices based on PBDB-T:DCF-2HT
(1:1.4, wt/wt) with and without N-Ph.

2HT and the different interaction with the polymers ow-
ing to the added alkyl chains in the two thiophene units.
The results indicate that side-chain engineering could be an
effective strategy for designing new non-fullerene deriva-
tives.

Mobility
The charge mobility of PBDB-T:DCF-2HT (wt/wt, 1:1.4)
blend film was measured by the SCLC method. As shown
in Fig. 3, for devices without any treatment, the hole and
electron mobilities were 1.21 × 10−5 and 3.34 × 10−5 cm2 V−1

s−1, respectively. However, the hole and electron mobilities
of devices with 0.5% N-Ph were 1.34 × 10−5 and 4.86 × 10−5

cm2 V−1 s−1, respectively, which is favorable for a higher Jsc
and fill factor (FF).

Morphology of the PBDB-T:DCF-2HT-blend films
The morphology of the PBDB-T:DCF-2HT-blend films
was investigated using AFM and TEM (the results for
the PTB7-Th:DCF-2HT film are presented in Fig. S3.)
As shown in Figs 4a and b, the root-mean-square (RMS)
surface roughness was 1.17 nm for the active layer without
any treatment. After 0.5% N-Ph was added, it increased to
1.64 nm, which reveals that the films are smooth with high
quality. Figs 4c and d show TEM images of the active layer.
Compared with the as-cast film,  better  phase  separation

Figure 3    (a) J–V characteristics of an electron-only device with the configuration ITO/Al (30 nm)/PBDB-T:DCF-2HT/Au (30 nm). (b) J–V character-
istics of a hole-only device with the configuration ITO/PEDOT:PSS (30 nm)/PBDB-T:DCF-2HT/Au (30 nm). The solid line represents the fit using a
model of single-carrier SCLC with field-independent mobility. The JD–V characteristics are corrected for the built-in voltage, Vbi, that arises from the
work function difference between the contacts.
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Figure 4   AFM (a, b) and TEM images (c, d). (a and c) The as cast and (b and d) with 0.5% N-Ph of PBDB-T:DCF-2HT-blend film.

appears after the addition of 0.5% N-Ph (v/v), indicating
high exciton dissociation and charge transport efficiency,
and thus a significantly improved Jsc and FF.

CONCLUSIONS
In conclusion, an A-D-A-type small molecule, DCF-2HT,
was designed and synthesized for use as an electron ac-
ceptor. The influence of alkyl chains on the optical and
electrochemical properties and device performance were
investigated. Compared to DICTF, the new molecule
exhibits high-lying LOMO energy levels. Devices based
on PBDB-T:DCF-2HT and PTB7-Th:DCF-2HT show
PCEs of 5.71% and 4.83%, respectively. A higher Voc was
obtained compared to that of DICTF-based devices. The
results demonstrate that side-chain engineering could
be an effective strategy for designing new non-fullerene
derivatives.
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己基取代噻吩为桥的“受体-给体-受体”型小分子作为非富勒烯太阳电池受体的研究
刘勇涛1, 张洪涛1,2*, 孙延娜1,2, 万相见1,2, 陈永胜1,2

摘要   本文合成了一个以芴为中心核,己基取代噻吩为桥,双氰基茚满二酮为端基的“受体-给体-受体”型小分子(DCF-2HT),并对基于给体
材料为PBDB-T/PTB7-Th,受体为DCF-2HT的太阳能电池器件光伏性能进行了研究. 经过一系列形貌优化,以0.5%甲基萘为添加剂, PBDB-T
和PTB7-Th为给体材料的器件效率分别优化至5.71%和4.83%.
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