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ABSTRACT: Understanding the origin of different morphologies in bulk-heterojunction
solar cells can provide effective guidelines to rational control of the morphologies in the
active layer. Here, we have uncovered the importance of molecular interactions on the
morphologies for not only donor materials but also for fullerene acceptors in organic solar
cells through the multiscale coarse-graining molecular dynamic simulations at the real
device level (∼83 nm × 83 nm × 83 nm). It is found that oligothiophene donors with
polar end groups could not only facilitate the formation of continuous donor network but
also promote the aggregation and connection of fullerenes toward efficient hole and
electron transport. On the contrary, fullerenes are well dispersed at the molecule levels in
the less polar oligothiophene matrix and thus contribute to the poor electron transport
mobility and device performance, which is consistent with the observed differences in both
morphology and charge transport properties of these two systems. These results would
provide effective guidelines for the rational molecule design and morphology control to
further enhance the device performance of organic solar cells.

1. INTRODUCTION

Bulk-heterojunction organic solar cells (BHJ-OSCs) composed
of electron-donating and electron-accepting materials have
received much attention in the past 2 decades owing to their
fascinating features, such as low cost, light weight, solution-
processability, and high-mechanical flexibility.1 Although the
power conversion efficiency (PCE) for BHJ-OSCs has recently
been significantly improved to over 11%,2 it does not yet meet
the requirement for commercialization. Besides the influence of
interlayers3,4 and novel device structures,5,6 materials7−12 and
morphologies13−15 in the active layer decisively control the
performance of OSCs. Compared with the complex morphol-

ogies owning to the mixture nature of electron-donating and
accepting materials and other additives,16,17 some effective
strategies have been successfully developed and employed to
tune the optical and electronic properties of both donor and
acceptor materials.18−23 However, due to the lack of detailed
understanding at the mesoscopic level, there still has been no
efficient strategy to optimize and control the morphology in the
active layer, and the only way to achieve optimized morphology
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in the device is still based on the iterative and time-consuming
trial-and-error processes.24−28 Therefore, understanding the
relationship between molecular structures and morphologies is
essential for further enhancing the performance of BHJ-OSCs
through rational morphology control based on molecular
design. Molecular dynamics (MD) simulations29−37 were
successfully employed to investigate the blended states of
donors and acceptors in the active layer, and tremendous
progresses were achieved.38−42 However, most of the simulated
boxes are even smaller than the experimental domain size, and
the molecular origin of different morphologies is still unclear.
Thus, the large-scale coarse-graining MD simulations43−49 at
the real device levels (∼100 nm) are extremely needed for
systematically investigating the origin of different morphologies
at the molecular level in OSCs.
In our previous studies, it has been found that two very

similar donor molecules, DERHD7T and DRCN7T (the
chemical structures are shown in Figure 1) behave very
differently in their OSC devices with the same acceptor,
PC71BM, and DRCN7T performs much better than
DERHD7T despite the fact that they have the same backbone
structure and substituted groups except a small difference in
their end groups.50 Thus, it is vital to explore and understand
why such a small difference in molecular structure could result
in so large difference in photovoltaic performances. In this
work, by combining MD simulation using the multiscale coarse-
grained (MS-CG) model51,52 at the real device scale (∼83 nm
× 83 nm × 83 nm) with the experimental morphology results,
it is found that fullerenes are well dispersed at the molecular
level in the less polar matrix of DERHD7T, but aggregate
strongly in the more polar DRCN7T:PC71BM system, and thus
lead to better and continuous hole and electron-transport
channels in the latter system. As a result, the percolation ratio45

for fullerene phases to the electrodes increases drastically from
0.05% for DERHD7T:PC71BM to 90% for DRCN7T:PC71BM
systems, respectively, consistent with the experimental
morphologies and mobility observations. Our results reveal
the important influence of molecular design on the device

performance of BHJ-OSCs, by tuning the morphologies of not
only donor materials but also fullerene acceptors.

2. COMPUTATIONAL DETAILS

The CG MD simulations were carried out with the DL_POLY
program (version 2.14).53 The details of the MS-CG models
are given in the Supporting Information. The size of the
simulation box with the periodic boundary condition (PBC)
applied is ca. 83 nm × 83 nm × 83 nm, which is closed to the
thickness of the active layer (∼100 nm) in real OSC devices.
We note that a large-scale simulation is crucial for this work,
because of the formation of large domains in the system.50 A
small simulation box may lead to serious finite size effect (see
Figure S1 for more details).
As shown in Figure 1, the fullerene acceptor is coarse-grained

as CG site D, the central trithiophene units in oligothiophene
donors as CG sites A, the bridged dithiophene units as CG sites
B, and end groups as CG sites C. The partial charge of each CG
site, denoted in Figure 1, is the sum of the partial charges of all
underlying atoms, and the force-field parameters for the
bonded interactions at the CG level, listed in Tables S2 and
S3, have been obtained by fitting the numerical curves provided
by the MS-CG program with appropriate functions.51,52

3. RESULTS AND DISCUSSION
3.1. The Experimental Morphologies. Although the two

donor molecules are very similar, their slight difference in the
small end groups has a significant influence on the mesoscopic
morphologies of their mixtures with PC71BM. As shown by the
bright field transmission electron microscopy (BF-TEM)
images in Figure 1, parts b and c, the fullerene acceptors are
well dispersed in the DERHD7T-rich matrix, while a
bicontinuous interpenetrating network with well-expressed
fibri l lar structures were spread out through the
DRCN7T:PC71BM film. By replacing the thio groups with
the stronger electron-withdrawing dicyanomethylene (DCM)
groups, DRCN7T was expected to have an enhanced polarity
and intermolecular interaction than that of DERHD7T, which
was confirmed by the density functional theory (DFT)

Figure 1. (a) Chemical structures of DERHD7T, DRCN7T, and PC71BM, and the corresponding coarse-grained models with partial charges
denoted for all coarse-grained sites. Bright-field TEM images of the blended DERHD7T:PC71BM (b) and DRCN7T:PC71BM (c) films are also
shown for comparison.
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calculations54 at the wB97XD/6-31G* level, demonstrating that
the binding energy increases significantly from 75.28 kcal/mol
for DERHD7T π-dimers to 78.75 kcal/mol for DRCN7T π-
dimers (Figure S2). With this, the MD simulations with the
MS-CG models were then performed to investigate the micro-
mechanism governing the formation of mesoscopic morphol-
ogy due to molecular interactions.
3.2. The Simulated Morphologies from Coarse-

Graining Molecular Dynamic Simulations. The snapshots
of 4 nm-thick slices (83 nm ×83 nm in the other two
dimensions) for the two investigated systems have been cut out
from the simulated PBC box and are shown in Figure 2. It can
be seen that fullerene acceptors are well dispersed at the
molecular level in the less polar DERHD7T matrix (Figure 2
parts a and c), while the DRCN7T molecules form continuous
networks (Figure 2, parts b and d) with strong fullerene
aggregations, which are in generally consistent with the BF-
TEM results shown in Figure 1. The resulting continuous
charge transport channels for both holes and electrons in the
DRCN7T:PC71BM blend would greatly influence the charge
transport properties, as discussed below.
The heterogeneity order parameter (HOP),55 which was

successfully developed to investigate the degree of aggregations
in ionic liquids with high reliability in our previous studies,56

was employed to study the degrees of aggregation of different
CG sites in the above two systems. A larger HOP value
corresponds to a higher degree of aggregation (see the
Supporting Information for more details),55 and details of
HOP are described in the Supporting Information. As shown in
Table S4, the HOPs for the center-of-masses (COMs) of
PC71BM (sites D) are 17.88 and 15.92 in the
DRCN7T:PC71BM and DERHD7T:PC71BM blends, respec-
tively. The larger HOP for fullerenes in the DRCN7T:PC71BM

system indicates that fullerenes pack more tightly than that in
DERHD7T:PC71BM. Consistently, the COMs of the end
groups (sites C) in DRCN7T:PC71BM also have a larger HOP
value of 16.88 than that of 16.17 for DERHD7T:PC71BM,
demonstrating stronger polar attractions between the end
groups of DRCN7T molecules, partly attributed to the
significantly increased partial charges of the end groups from
−0.134e for DERHD7T to −0.230e for DRCN7T, respectively
(as shown in Figure 1).

3.3. The Mesoscopic Intermolecular Structure of
Oligothiophene Donors and Evidence from the Wide-
Angle X-ray Diffractions. The mesoscopic intermolecular
structures of both oligothiophene donors and fullerene
acceptors were then systematically quantified by the COM
radial distribution function (RDF). As shown in Figure 2, parts
e and f, both DRCN7T:PC71BM and DERHD7T:PC71BM
systems exhibit very sharp and regular RDF peaks between the
COMs of the central trithiophene units (sites A), indicating
that the oligothiophene donors in both systems exhibit very
strong crystalline-like behaviors, consistent with the exper-
imentally observed (100), (200), (300), and (010) diffraction
peaks in both systems through two-dimensional-grazing
incidence wide-angle X-ray diffractions (2D-GIWAXD).50 On
the other hand, the COM RDFs for the end groups (sites C),
shown in Figure S3, exhibit much stronger RDF peaks for
DRCN7T:PC71BM than DERHD7T:PC71BM, which further
manifests the existence of stronger intermolecular interactions
between DRCN7T molecules owning to the polar end groups.
This also agrees well with the experimental results that the
(001) diffraction peak (the orientation along the backbone
directions of oligothiophenes) only observed through 2D-
GIWAXD in the DRCN7T:PC71BM blends.50,57 Thus, in the
blends with the fullerene acceptor, the relatively stronger

Figure 2. Sliced snapshot of the simulated morphologies (83 nm ×83 nm ×4 nm) for the DERHD7T:PC71BM (a) and DRCN7T:PC71BM (b)
blended films. The oligothiophene-donor-only snapshot for DERHD7T:PC71BM (c) and DRCN7T:PC71BM (d) blended films are also shown for
comparison. The oligothiophene chains were colored with green and fullerenes were colored with blue. The scale bars are 20 nm in parts a−d. The
RDFs for the central trithiophene units of the oligothiophene donors (CG site A) in the DERHD7T:PC71BM (e) and DRCN7T:PC71BM (f) blends
are also plotted.
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polarity of DRCN7T molecules than DERHD7T encourages
nonpolar fullerene molecules to aggregate, as analyzed in details
below.
3.4. The Mesoscopic Intermolecular Structure of

Fullerene Acceptors and Evidence from Small-Angle X-
ray Scattering. Since DRCN7T molecules are more polar
than DERHD7T, nonpolar PC71BM molecules should have a
stronger degree of aggregation in the former blend than the
latter.58 The difference in fullerene spatial distributions in the
two systems is better illustrated by only displaying fullerene
molecules in the above sliced simulation snapshots (Figure 3,
parts a and b). The COM RDFs for the fullerenes in these two
systems have also been calculated and shown in Figure 3, parts
c and d . The lower fu l l e r ene RDF peaks in
DERHD7T:PC71BM (Figure 3c) confirms that fullerenes
pack loosely in the blend with DERHD7T. By contrast, five
distinctive high RDF peaks ranging from 9 to 13 Å are observed
in the DRCN7T:PC71BM blend (Figure 3d), indicating the
existence of highly ordered structures of fullerenes (Figure 3b).
To experimentally confirm the two different behaviors of
fullerenes in these two systems, the two-dimensional-grazing
incidence small-angle X-ray scattering (2D-GISAXS) was
performed on both pure oligothiophene donor films and their
BHJ blends with PC71BM (Figure 3, parts e and f). A series of
DERHD7T:PC71BM and DRCN7T:PC71BM samples with
different weight ratios varying from 1:0, 1:0.3, 1:0.5 to 1:0.8
were measured under the same conditions. As shown in Figure
3f, the scattering peak for DRCN7T:PC71BM samples is
gradually enhanced with increasing PC71BM content. Thus, the
broad peak at q of 0.007−0.04 Å−1 in the DRCN7T:PC71BM
blend is ascribed to the scattering of aggregated fullerene
domains, as reported in literature.59 By contrast, the 2D-
GISAXS pattern for the DERHD7T:PC71BM film does not
show any obvious peak and almost retains the same with
increasing PC71BM content (Figure 3e), which manifests that

f u l l e r ene mo l e cu l e s do no t a gg r e g a t e i n t he
DERHD7T:PC71BM blend.
In order to obtain the theoretical fullerene domain size, we

have calculated the structure factors (S(q)) of fullerenes (site
D). As shown in Figure S4, the structure factors of fullerenes in
both DRCN7T:PC71BM and DERHD7T:PC71BM blends
match well with the experimental PXRD of pure PC71BM
with q > 0.5 Å−1, which further confirm the reliability of our
CG-MD models and simulation procedures. The S(q) of
fullerenes in DRCN7T:PC71BM and DERHD7T:PC71BM
systems exhibit peaks at 0.68 and 0.44 Å−1, corresponding to
intermolecular distances of 9.2 and 14.1 Å, respectively. This
indicates that fu l le renes are c lose ly packed in
DRCN7T:PC71BM, while loosely packed with larger inter-
molecular distance in DERHD7T:PC71BM. This is also
consistent with the different behaviors of RDFs and snapshots
of fullerenes in the two blends as discussed above. On the other
hand, only the fullerenes in DRCN7T:PC71BM exhibit the
domain size S(q) peak at ∼0.08 Å−1 (as shown in Figure S4),
and thus, the theoretical domain spacing of fullerene aggregates
in DRCN7T:PC71BM is 7.85 nm, which agrees well with the
actual fullerene domain size of 6.88 ± 0.51 nm deduced from
2D-GISAXS.35

3.5. Correlation of the Percolation Ratios of Oligo-
thiophene or Fullerene Phases to Electrodes with
Experimental Charge Transport Mobilities and Device
Performances. The variation of the morphologies significantly
influence the charge transport properties and thus the device
performances,16,17 so the percolation ratios for both oligothio-
phene and fullerene phases to the electrodes45 were calculated
to quantify the hole and electron transport properties in the
above two different morphologies. Considering that isolated
oligothiophene donor (or fullerene) domains can act as the
recombination center obstructing the transportation of holes
and electrons toward the respected electrodes, a higher

Figure 3. Sliced simulation snapshots with fullerene acceptors only (∼83 nm × 83 nm × 4 nm) for DERHD7T:PC71BM (a) and
DRCN7T:PC71BM (b). The scale bars are 20 nm. The RDFs for the fullerene acceptors in the DERHD7T:PC71BM (c) and DRCN7T:PC71BM (d)
blends and the in-plane GISAXS profiles of the DERHD7T:PC71BM (e) and DRCN7T:PC71BM (f) blend films with different weight ratios (1:0,
1:0.3, 1:0.5 and 1:0.8) are also plotted for comparison.

The Journal of Physical Chemistry C Article

DOI: 10.1021/acs.jpcc.6b11824
J. Phys. Chem. C 2017, 121, 5864−5870

5867

http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.6b11824/suppl_file/jp6b11824_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.6b11824/suppl_file/jp6b11824_si_001.pdf
http://dx.doi.org/10.1021/acs.jpcc.6b11824


percolation ratio could ensure an expedient charge transport
channel and thus better photovoltaic performances.60 Details of
the percolation-ratio calculations can be found in the
Supporting Information. Unlike fullerene acceptors, the
calculations of the percolation ratios for oligothiophene donors
are not straightforward since each molecule has five CG sites.
We have overcome this difficulty by regarding two
oligothiophene molecules as connected if the intermolecular
distance between any of their two sites is within the cutoff value
of 6.0 Å (refer to the Supporting Information). As shown in
Figure 4a, for the donor molecules, the DRCN7T:PC71BM
system has a larger percolation ratio (99%) than that of
DERHD7T:PC71BM (83%), coincident with the experimental
observed enhancement of hole transport mobilities from 1.18 ×
10−4 cm2 V−1 s−1for DERHD7T:PC71BM blends to 5.91 ×
10−4 cm2 V−1 s−1 for DRCN7T:PC71BM systems, respec-
tively.50 The percolation ratios for fullerenes are dramatically
different, which are 90% for the DRCN7T:PC71BM system and
only 0.05% for the DERHD7T:PC71BM blend by using a cutoff
distance of 13 Å (refer to the Supporting Information). This is
also consistent with the experimentally observed dramatic
increase of electron mobility from 1.04 × 10−5 for
DERHD7T:PC71BM to 1.28 × 10−4 cm2 V−1 s−1 for
DRCN7T:PC71BM blends, respectively.50 Thus, the unbal-
an c ed ho l e and e l e c t r on pe r co l a t i on s i n the
DERHD7T:PC71BM system should account for the lower fill
factor (FF) of 0.52 and poorer PCE of 4.35%, while the
DRCN7T:PC71BM system has an enhanced FF of 0.69 and
PCE of 9.30% owing to its balanced hole and electron
percolations.50

4. CONCLUSION
The multiscale coarse-graining molecular dynamics simulations
at the real device scale (∼83 nm × 83 nm × 83 nm) were
employed to systematically investigate the influence of donor
intermolecular interactions on the mesoscopic morphologies of
BHJ-OSCs, and consistent results with experiments are
obtained. It is found that polar electron-donating molecules
could facilitate the aggregation and connection of both donors
and nonpolar acceptors, resulting in efficient hole and electron
transport. By contrast, in less polar donor systems, fullerenes
are dispersed due to the relatively weaker donor−donor
intermolecular interaction, thus leading to poor electron
transport mobility and device performance. Our results indicate
that mesoscopic morphologies in the active layer can be directly

predicted from molecular structures by employing the multi-
scale coarse-graining molecular dynamics simulation method-
ology, which provides a more efficient alternative method other
than the time-consuming experimental try-and-error approach
employed currently and thus facilitates the rational molecular
design and morphology optimization toward enhanced device
performances.
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