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Fluorination-modulated end units for high-
performance non-fullerene acceptors based organic
solar cells
Yanna Sun†, Huan-Huan Gao†, Yuan-Qiu-Qiang Yi, Xiangjian Wan, Huanran Feng, Xin Ke,
Yamin Zhang, Jing Yan, Chenxi Li and Yongsheng Chen*

Organic solar cells (OSCs) have drawn great attention for
their low cost, light weight, solution processability and
flexibility [1–3]. Over the last decade, fullerene and their
derivatives have been the dominant electron acceptors for
OSCs due to their excellent electron-transport properties,
but limited by their disadvantages of poor light absorp-
tion, high synthesis cost, and difficulties in property
tunability. To tackle these issues, design and synthesis of
non-fullerene acceptors (NFAs) have received extensive
attention and are urgently needed to explore for en-
hanced photovoltaic performance [4–9]. Among all the
types of NFAs, acceptor-donor-acceptor (A-D-A) archi-
tecture based non-fullerene small molecule acceptors
(NF-SMAs) shows tremendous potentials [10–13] and
has achieved great advances for their excellent perfor-
mance with power conversion efficiencies (PCEs) over
14% for single junction cells [14–18] and over 17% for
tandem cells [19].
The giant success of A-D-A backboned NF-SMAs is

mainly due to their well-defined chemical structures, ea-
sily tuned energy levels and facile synthetic procedures
[20–32]. In previous studies, through delicately mod-
ulating the NF-SMAs, the high efficiency of non-fullerene
organic photovoltaiscs (OPVs) has been obtained [33–
38]. As such, it is believed that there is a facile and ef-
fective way to finely tune properties of NFAs and further
significantly enhance OPVs performance. The A-D-A
backboned NF-SMAs mainly consisted of three segments:
ladder-type electron-donating core, electron-withdrawing
end units and outstretched side chains. Thus, modifica-
tion of the above three components is an effective ap-
proach to obtain tunable energy levels, optical absorption,

crystallinity, π-π stacking and improved morphology of
the active layers. In view of synthetic economy, the
modification of electron-withdrawing end units is com-
paratively easy and facile as the attachment of the end
units is typically the last step of the synthetic route
[22,24,39–42].
Fluorination strategy has been widely applied in the

organic semiconductor synthesis [43,44]. The roles of
fluorine in OSCs materials have been extensively studied
[45–48]. Firstly, fluorination enables strong electron-
withdrawing ability due to strong electronegativity of
fluorine, reduces the bandgap to near-infrared region and
broadens the absorption range, which is one of the key
determinants for achieving high short-circuit current
density (Jsc) [13,36]. Secondly, fluorination can enhance
π-π stacking and crystallinity of the molecule to optimize
morphology of the active layers and obtain appropriate
domain size for achieving high mobility and fill factor
(FF) [22,29,40]. Finally, fluorination would promote in-
termolecular interactions through forming noncovalent
F–S and F–H bonds, which are favorable for efficient
charge transport [43].
The A-D-A structured NF-SMAs based on fused benzo-

[1,2-b:4,5-bʹ]dithiophene electron-donating core show
large rigid and coplanar structure with strong electron-
donating ability, both of which are beneficial to enhan-
cing light absorption and charge transport [28,33]. In this
work, three A-D-A structured NF-SMAs with end units
modulated with different number of fluorine atoms and
the benzo[1,2-b:4,5-bʹ]dithiophene fused with diarylcy-
clopentadienylthieno[3,2-b]thiophene (OBTT) as the core
unit, namely, OBTT-0F, OBTT-2F and OBTT-4F
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(Fig. 1a), were designed and synthesized. We system-
atically characterized the optoelectronic properties and
optimized the device performance of the three NF-SMAs.
Fluorine modification on the end units leads to the sig-
nificant downshift of the lowest unoccupied molecular
orbital (LUMO) level and the absorption edge redshift of
the NFAs. Moreover, the improvements of their crystal-
linity and enhanced π-π stacking ameliorate morphology
of the active layers, which contribute to a notably elevated
Jsc and FF of the corresponding OSCs. The OSCs based on
OBTT-2F achieve a high PCE of 12.36% with a com-
paratively high Jsc of 20.83 mA cm−2 and FF of 71.6%. Our
work reveals the vital role of the fluorination-modulated
end units in A-D-A structured NF-SMAs on optoelec-
tronic properties, charge transport, film morphology and
photovoltaic properties, and provides valuable insights to
optimize the structure and properties of the A-D-A
structured NF-SMAs.
The desirable molecules OBTT-0F, OBTT-2F and

OBTT-4F (Fig. 1a) were synthesized by Knoevenagel
condensation between the dialdehyde intermediate and
the corresponding end units via a five-step chemical re-
action as displayed in Scheme S1, and the detailed syn-

thetic procedures including characterization data are
presented in the Supplementary information (SI). Though
OBTT-2F is a mixture for the two isomers of end groups,
consistent performance was observed between multiple
batches. All three NF-SMAs are soluble in common or-
ganic solvents (such as dichloromethane, chloroform and
chlorobenzene). As shown in Fig. S1, the decomposition
temperatures of the three molecules at 5% weight loss are
325, 332 and 328°C for OBTT-0F, OBTT-2F and OBTT-
4F, respectively, indicating their good thermal stability.
The ultraviolet-visible-near-infrared (UV-vis-NIR) ab-

sorptions of these three NF-SMAs in their diluted solu-
tions (Fig. S2) and thin films (Fig. 1c) were investigated
(Table 1). As revealed in Fig. S2, in chloroform solutions,
these three NFAs all exhibit strong and broad absorption
in the region of 600–800 nm and the maximum absorp-
tion peaks of OBTT-0F, OBTT-2F and OBTT-4F are 746,
761 and 763 nm, respectively. For the film (Fig. 1c), the
absorption peaks of the NFAs with fluorine on the end
units broaden with considerable redshift, due to the en-
hanced crystallinity and intermolecular π-π stacking. It is
worthwhile to note that there are strong shoulder peaks of
the three NFAs, implying effective intermolecular π-π

Figure 1 (a) Chemical structures of OBTT-0F, OBTT-2F and OBTT-4F. (b) Diagram of a conventional OSC. (c) Absorption spectra of OBTT-0F,
OBTT-2F, OBTT-4F and PBDB-T in neat films. (d) Energy levels of the three acceptors.
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stacking. The intensive electron-withdrawing ability of
fluorine makes a significant bathochromic-shifted spec-
trum for OBTT-0F, OBTT-2F and OBTT-4F. Thus, the
optical bandgaps (Eg

opt) of OBTT-0F, OBTT-2F and
OBTT-4F, calculated from the absorption onset are 1.45,
1.38, and 1.31 eV, respectively, and their absorption range
is in near-infrared region, which is complementary to that
of the wide bandgap polymer poly[(2,6-(4,8-bis(5-(2-
ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-bʹ]dithio-
phene))-alt-(5,5-(1ʹ,3ʹ-di-2-thienyl-5ʹ,7ʹ-bis(2-ethylhexyl)
benzo[1ʹ,2ʹ-c:4ʹ,5ʹ-cʹ]dithiophene-4,8-dione))] (PBDB-T)
[47]. Their energy levels were estimated by electro-
chemical cyclic voltammetry (CV) referenced to the en-
ergy level of Fc/Fc+ (−4.8 eV below the vacuum level)
(Fig. S3). The LUMO levels of OBTT-0F, OBTT-2F and
OBTT-4F are −3.87, −3.97, and −4.01 eV, respectively.
These results indicate that fluorine modulation on the
end units indeed downshifts the LUMO level, broadens
the absorption range with redshifts to near-infrared re-
gion, in good agreement with the measured optical
bandgaps.
To evaluate the potential photovoltaic performance of

OBTT-0F, OBTT-2F and OBTT-4F as electron acceptors,
solution-processed OSCs were fabricated with the con-
ventional structure of indium tin oxide (ITO)/poly(3,4-
ethylenedioxythiopene):poly(styrenesulfonate) (PEDOT:
PSS)/PBDB-T:acceptors/perylene diimide functionalized
with amino N-oxide (PDINO)/Al, where PDINO was
selected as electron transport layer due to its suitable
energy levels and electron extraction ability [49]. After
systematic device optimizations (Tables S1–S3), chloro-
form was used as the solvent and 1,8-diiodooctane (DIO)
was selected as solvent additive to tune the active layer
morphology. The optimal amount of DIO is 0.5%, 0.3%
and 0.3% volume, respectively, for the OBTT-0F, OBTT-
2F and OBTT-4F based OSCs. The total concentration of
donor and acceptor was 11 mg mL−1 with donor:acceptor
weight ratio of 1:1.2. The optimized device parameters are
summarized in Table 2 with corresponding J-V curves
shown in Fig. 2a. The highest PCE of 12.36% is achieved
by PBDB-T:OBTT-2F based devices along with a Voc of

0.828 V, Jsc of 20.83 mA cm−2, and FF of 71.6%. DIO
additive does not affect the Voc notably but increases the
Jsc and FF for all OBTT-0F, OBTT-2F and OBTT-4F
based OSCs, which results in higher PCEs. The perfor-
mance of these three sets of OSCs clearly shows the effects
of fluorination on the end units. The Voc is gradually
reduced for the deeper LUMO level caused by electron-
withdrawing effect of fluorine. However, due to smaller
bandgap and broader absorption region, the absorption
onset of OBTT-0F, OBTT-2F and OBTT-4F based OSCs
extends from 850 to 900 and 950 nm, which are ac-
countable for the significantly increased Jsc.
The external quantum efficiency (EQE) was measured

to verify the higher Jsc for OBTT-2F and OBTT-4F based
devices. As shown in Fig. 2b, the integrated Jsc of OBTT-
0F, OBTT-2F and OBTT-4F based OSCs are in reason-
able agreement with the measured Jsc (Table 2). After
fluorination-modulating the end units, as EQE is notably
enhanced, OBTT-2F and OBTT-4F based OSCs obtain
higher Jsc than OBTT-0F based devices, which could be
ascribed to their significantly redshifted absorption.
To investigate the effect of fluorination on electronic

properties of these three NFAs, the electron and hole
mobility of PBDB-T:OBTT-0F, PBDB-T:OBTT-2F and
PBDB-T:OBTT-4F blend films were measured by the
space-charge-limited current (SCLC) method using the
electron-only and hole-only devices, respectively
(Fig. S4). The calculated electron and hole mobility
parameters for the corresponding blend films are
0.91×10−4, 1.29×10−4 and 1.06×10−4 (μe) and 1.28×10−4,
1.47×10−4 and 0.69×10−4 cm−2 V−1 s−1 (μh), respectively. It
should be noticed that PBDB-T:OBTT-2F based blend
film has the highest electron mobility and most balanced
carrier mobility among all films, contributing to the
highest FF of 71.6% for PBDB-T:OBTT-2F based OSCs.
The exciton dissociation and charge collection behavior

in the three OSCs were studied by measuring their pho-
tocurrent density (Jph) as a function of the effective ap-
plied voltage (Veff) to tell the difference of Jsc and FF
among OBTT-0F, OBTT-2F, and OBTT-4F based OSCs.
Herein, Jph is calculated as Jph = JL − JD, where JL and JD are

Table 1 Basic properties of OBTT-0F, OBTT-2F and OBTT-4F

Acceptors λmax
sol (nm) λmax

film (nm) λedge
film (nm) Eg

opt (eV)a HOMO (eV) LUMO (eV) Eg
CV (eV)b

OBTT-0F 746 756 856 1.45 −5.27 −3.87 1.40

OBTT-2F 761 784 897 1.38 −5.30 −3.97 1.33

OBTT-4F 763 811 945 1.31 −5.39 −4.01 1.38

a) The optical band gap estimated from the absorption onset. b) Electrochemical bandgap obtained from ELUMO – EHOMO.

SCIENCE CHINA Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .LETTERS

3© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Downloaded to IP: 192.168.0.24 On: 2019-04-10 10:07:30 http://engine.scichina.com/doi/10.1007/s40843-019-9415-2



the current densities under light and in the dark, while
Veff is defined as Veff = V0 − Vapp, where V0 is the voltage
when Jph = 0 and Vapp is the applied external voltage. As
depicted in Fig. 2c, when Veff exceeded 1.5 V, Jph of the
three OSCs reached saturation (Jsat), indicating that the
charge recombination is minimized at high voltages due
to the high internal electric field in the devices. To further
compare the charge dissociation and charge collection
probability (P (E, T)) in the three devices, where E and T

represent field and temperature respectively, the value of
(Jph/Jsat) was adopted. Under the short-circuit conditions,
compared with 92% for the OBTT-0F based devices, the
Jph/Jsat ratios were 96% and 95% for the OBTT-2F and
OBTT-4F-based devices, suggesting introducing fluorine
to the end units could lead to high exciton dissociation
and charge collection efficiencies and thus the high FFs.
Furthermore, we investigated the charge recombination

property in the OBTT-0F, OBTT-2F, and OBTT-4F based

Figure 2 (a) Current density-voltage (J-V) curves of the devices based on PBDB-T and OBTT-0F (2F, 4F) at optimized conditions under the
illumination of AM 1.5G (100 mW cm−2); the inset shows the histograms of the PCE counts for 30 devices. (b) EQE spectra and integrated Jsc of the
devices. (c) Jph versus Veff and (d) light-intensity dependence of the devices’ Jsc.

Table 2 Device performance parameters of OSCs based on PBDB-T and three acceptors measured at simulated 100 mW cm−2 AM 1.5G illumination

Acceptors Treatment Voc (V)
Jsc (mA cm−2)

FF (%)
PCE (%)

Experimental Calculated a Best Average b

OBTT-0F As-cast 0.902 13.92 58.2 7.31 7.30

0.50% DIO 0.889 16.86 16.02 67.9 10.20 10.16

OBTT-2F As-cast 0.827 18.32 61.1 9.26 9.17

0.30% DIO 0.828 20.83 19.9 71.6 12.36 12.10

OBTT-4F As-cast 0.777 18.96 57.5 8.48 8.42

0.30% DIO 0.772 21.67 20.5 69.1 11.55 11.43

a) The values are integrated Jsc from EQE spectra. b) Average values from 30 devices.
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OSCs by measuring the relationship between the Jsc and
the light intensity (P). The relationship between Jsc and P
can be described with the formula of Jsc∝P

α, where power
law exponent α implies the extent of bimolecular re-
combination. Weak bimolecular recombination in the
device would result in a linear dependence of Jsc on light
intensity with an α of ∼1. As shown in Fig. 2d, the α for
the devices based on PBDB-T:OBTT-0F, OBTT-2F and
OBTT-4F are 0.94, 0.99, and 0.98, respectively. All the
values of α are very close to 1, and OBTT-2F and OBTT-
4F-based devices demonstrate higher α, implying that
through introduction of fluorine atoms on the end units,
less bimolecular recombination occurred in the optimized
devices.
The morphology of films based on OBTT-0F, OBTT-2F

and OBTT-4F was investigated by grazing incidence
wide-angle X-ray scattering (GIWAXS). The 2D GI-
WAXS patterns and cut-line profiles of the in-plane and
out-of-plane directions are shown in Fig. 3. In the OBTT-
0F neat film, weak (100) lamellar diffraction peak appears
at ~0.32 Å−1 with π-π stacking diffraction peak (010) at
around 1.79 Å−1, indicating that it is highly amorphous in
the pure film. After introducing fluorine to the end units,
OBTT-2F and OBTT-4F pure films exhibit strong π-π
stacking (010) diffraction peaks at 1.80 and 1.81 Å−1, re-
spectively. These results reflect that fluorination-modu-
lated end units enhance the π-π stacking of A-D-A
structured NFAs. As for PBDB-T:NFAs blend films
(Fig. 3d–f), the PBDB-T:OBTT-0F blend film shows
strong (010) diffraction peaks in qz direction of the

polymer donor but weak peak of the OBTT-0F [50].
However, in the OBTT-2F and OBTT-4F based blend
films, they show dominant face-on orientations with in-
tense (010) diffraction peaks at 1.73 and 1.74 Å−1, re-
spectively, with the crystal coherence length (CCL) of
62.8 and 37.7 Å−1 by Gaussian fitting. The GIWAXS re-
sult reveals that fluorination-modulated end units can
enhance π-π stacking and crystallinity of the NF-SMAs,
which is beneficial to high charge mobility and FF.
To further investigate the phase separation morpholo-

gies of the three photoactive layers, atomic force micro-
scopy (AFM) and transmission electron microscopy
(TEM) were carried out. As shown in Fig. 4a, d, g, the
PBDB-T:OBTT-0F based active layer shows smooth
morphology with small root-mean-square (RMS) rough-
ness (0.83 nm, Fig. 4a). No large phase separation was
observed from its TEM image. The PBDB-T:OBTT-2F
and PBDB-T:OBTT-4F films gave larger Rq values of 1.76
and 2.82 nm (Fig. 4b, c), indicating more ordered na-
noscale morphology in the blend films. Meanwhile, the
AFM phase and TEM images of the PBDB-T:OBTT-2F
(Fig. 4e, h) and PBDB-T:OBTT-4F (Fig. 4f, i) films show
larger and more continuous grain-like domains with
proper size, which is more favorable for charge transport
and collection.
In summary, to investigate the effect of fluorination-

modulated end units, three A-D-A structured NF-SMAs
of OBTT-0F, OBTT-2F and OBTT-4F are designed and
synthesized based on end units modulated with 0, 2, 4
fluorine atom(s). OBTT-0F, OBTT-2F and OBTT-4F all

Figure 3 2D-GIWAXS patterns for (a) OBTT-0F, (b) OBTT-2F and (c) OBTT-4F neat film, (d) PBDB-T:OBTT-0F, (e) PBDB-T:OBTT-2F and (f)
PBDB-T:OBTT-4F blend film. (g) Out-of-plane and in-plane GIWAXS profiles for the neat and blend films.
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have broad absorption in near-infrared region and show
low bandgaps of 1.45, 1.38, and 1.31 eV, respectively.
Through introduction of fluorine on the end units, the
absorption edge of the NFAs can significantly redshift
with the π-π stacking and crystallinity of the molecule
notably enhanced, although it also simultaneously causes
some downshift of energy levels of NFAs. Therefore,
fluorination on the end units results in lower Voc but
significantly higher Jsc and FF of the corresponding de-
vices. Overall, the two contrary factors endow the OBTT-
2F based OSCs with a high PCE of 12.36% notably better
than the OSCs based on OBTT-0F and OBTT-4F. Our
work indicates that delicate and fine tuning of molecular
structure could realize high performance of OPV.
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氟修饰端基非富勒烯受体高效率有机太阳能电池
孙延娜†, 高欢欢†, 易袁秋强, 万相见, 冯焕然, 柯鑫, 张雅敏,
燕晶, 李晨曦, 陈永胜*

摘要 本文设计合成了三个受体-给体-受体骨架的非富勒烯受体,
它们具有不同数目氟原子修饰的端基, 将其分别命名为OBTT-0F,
OBTT-2F和OBTT-4F. 氟端基使得最低未占分子轨道下移, 光谱红
移 , π-π堆叠和非富勒烯受体的结晶性增强 . 通过与聚合物给体
PBDB-T共混 , 基于OBTT-2F的分子同时获得了相对高的电流
(20.83 mA cm−2)和能量转换效率(12.36%). 该结果证明向端基上引
入氟原子是调控非富勒烯受体光电性能和光伏效率的简单有效的
方法.
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