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A B S T R A C T

Lithium-rich and Ni-rich cathode materials have been considered as the attractive candidate for their high ca-
pacitive performance, but usually exhibit poor rate performance and limited cycle life. Herein, a facile gaseous
sulfur treatment was developed to uniformly create oxygen vacancies and replace oxygen with sulfur atoms at
the surface region of lithium-rich and Ni-rich cathode materials. Such a treatment, when applied to typical Li- or
Ni- rich materials such as Li1.2Ni0.13Co0.13Mn0.54O2 (LNCMO), Li1.2Ni0.2Mn0.6O2 (LNMO) and
LiNi0.8Co0.1Mn0.1O2 (NCM811), could enhance significantly all their cycle and rate performance. For example,
LNCMO@S obtained from LNCMO, could exhibit a capacity retention of 81.10% after 600 cycles at 0.5 C
(compared with 65.78% of LNCMO after 200 cycles), together with an excellent rate performance of
174.8 mA h g−1 at 10 C (compared with 133.3mA h g−1 of LNCMO), which is among the best performance for
all Li-rich cathode materials. The revealed mechanism, where the partial replacement of O by S at the lattice
surface significantly reduces oxygen partial pressure and also enhances the Li ion conductivity, might shed light
on the comprehensive design and control of oxygen activity in transition-metal-oxide systems for Li-ion batteries
with high energy and power density.

Lithium-ion batteries (LIBs) have been proved to be one of the most
promising energy storage devices to power electric vehicles (EVs) and
hybrid electric vehicles (HEVs) due to their high energy density and
long cycle life [1,2]. However, the dissatisfactory energy density of LIBs
still limits their driving ranges and practical applications [3]. It is
generally believed that the capacity of the cathode materials is one of
the major limiting factors for the energy density of LIBs [4]. Therefore,
Li-rich layered oxide cathode materials (LLOs) and Ni-rich cathode
materials have been thought and explored as the possible future choices
because of their high specific capacity and low cost [5,6]. However, Li-
rich and Ni-rich cathode materials are still facing some fundamental
challenges.

LLOs always suffer from the inferior structure instability and voltage
decay, which greatly hinder their cycling stability and practical appli-
cations [7,8]. The structure instability is closely related to oxygen redox
reaction during the activation process of Li2MnO3 phase. It has been
demonstrated that a reversible oxygen redox reaction occurs in the bulk
structure of LLOs, which renders LLOs with extra capacity [9]. How-
ever, the surface oxygen atoms are easily oxidized to O2 and then

escape irreversibly from LLOs in the initial cycles [10]. More than that,
the escaped oxygen atoms can react with electrolyte easily, resulting in
continuous accumulation of non-electroactive species and increased
internal impedance [11]. Voltage decay is closely related to the tran-
sition metal migration during cycling, which causes the decreasing
energy density for Li-ion batteries using these materials. As for Ni-rich
cathode materials, the main strategy to increase its discharge capacity is
to increase Ni content [12]. However, high Ni content destabilizes the
crystal structure and results in oxygen evolution and serious Li/Ni ion
mixing placement [13]. Besides, the rate performance of Li- and Ni-rich
cathode materials also needs to be improved for realizing commercial
application.

Surface coating and bulk doping are common strategies to address
these problems of Li-rich and Ni-rich cathode materials [14,15]. Surface
coating can physically separate the cathode materials from the elec-
trolyte to avoid the side reactions between them. It can also enhance
the electron or ion conductivity depending on coating materials
[16,17]. However, surface coating can hardly alter the bulk charging/
discharging process, which is closely related to voltage decay for Li-rich
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cathode materials and Li/Ni mixing for Ni-rich cathode materials
[18,19]. Doping of foreign ions is a common strategy to stabilize the
crystal structure for Li- and Ni-rich cathode materials [19,20]. Cation
doping could improve cycle stability of these materials significantly but
cation doping sites are difficult to control since several transition metals
with different oxidation states coexist in the transition metal layer [21].
Compared with cation doping, anion doping is relatively easy to
achieve since there is only one kind of anion O2− in LLOs [21]. Besides,
suitable anions give higher reactivity for energy storage and conversion
materials [22–24]. Doping of F− anion has been extensively studied
since it can stabilize the crystal structure by formation F-M (Ni, Co and
Mn) bonds [21,25]. S2− exhibits a lower electronegativity than O2−

and the doping of S2− has great potential in enhancing the ionic con-
ductivity of Li- and Ni-rich cathode materials due to their weaker Li–S
bonds, [26,27] in addition to the much more convenient handling of
solid sulfur. Besides, sulfur doping would inhibit the cation migration
between Li and transition metal layers for Li- and Ni-materials due to
the larger atom radio of sulfur atom, which is closely related to the
voltage decay of Li-rich cathode materials and the Li/Ni mixing of Ni-
rich cathode materials [26]. In the rather rare studies for S2− doping,
Zhang et al. [27] has explored sulfur atom doping of LLOs by simply
mixing Li2S and LLOs followed by calcining in air and the doped LLOs
shows improved but still rather limited rate performance
(117mA h g−1 at 5 C).

Recently, Qiu et al. reported that gas-solid interfacial reaction be-
tween LLOs and CO2 could enhance the capacity and rate capability of
LLOs largely [28]. Aurbach et al. simply exposed LLOs in NH3 atmo-
sphere at 400 °C and the obtained cathode material showed enhanced
capacity performance and limited average voltage fading [11]. CO2 and
NH3 can react with oxygen atoms at the surface region of LLOs at sui-
table temperature [29]. As a result, the oxygen vacancies increase and
the oxygen partial pressure goes down at the surface region of LLOs.

Motivated by the considerations above, we proposed a method
based on a facile sulfur gas-solid doping treatment of LLOs to reduce
oxygen partial pressure at the surface of LLOs. All reactants are solid
state at first with a low reaction temperature of 250 °C and there is no
further treatment for doping samples, which means that this gaseous
sulfur treatment is facile, scalable and environmentally friendly. Such a
treatment, when applied to the representative Li- or Ni- rich materials
such as Li1.2Ni0.13Co0.13Mn0.54O2 (LNCMO), Li1.2Ni0.2Mn0.6O2 (LNMO)
and LiNi0.8Co0.1Mn0.1O2 (NCM811), could all enhance significantly
both their cycle and rate performance. For example, the obtained
LNCMO@S delivers a reversible capacity of 270.5mA h g−1 (0.05 C,
1 C= 200mA g−1) with a capacity retention of 81.10% after 600 cycles
at 0.5 C (compared with 65.78% of the undoped one LNCMO after 200
cycles), together with an excellent rate performance of 174.8mA h g−1

at 10 C (compared with 133.3mA h g−1 of LNCMO).
The preparation process of LLO@S is shown in Fig. 1. Firstly, solid-

state sulfur and LLOs were transferred into the reactor which owned
two chambers to hold sulfur and LLOs separately. Next, the reactor was
sealed with the assistance of a vacuum pump and alcohol blast burner
to avoid sulfur loss and the air interference during the reaction. The
sealed reactor was heated to a specific temperature for desired time for
the gas-solid reaction. Finally, the LLOs with sulfur doping (LLO@S)
was obtained without further purification and no solid sulfur left for all
our preparation in the reactor (Fig. S1).

After optimizing the conditions (reaction time, reaction temperature
and sulfur content) for the gas-solid reaction, LNCMO@S with an sulfur
content of 12mmol L−1 at 250 °C for 8 h shows the best electrochemical
performance (Figs. S2 and S3). Optimized LNCMO@S delivers a re-
versible capacity of 270.5mA h g−1 compared to 261.3mA h g−1 of
LNCMO at 0.05 C (Fig. 2a). In the cyclic voltammetry (CV) analysis for
LNCMO and LNCMO, the oxidation peaks at around 4.0 and 4.5 V vs Li/
Li+ is associated with oxidation of the Ni–Co–Mn component and ac-
tivation of the Li2MnO3 component, respectively. A new peak emerged
at 2.8 V after gaseous sulfur treatment, representing formation of a

spinel surface layer induced by the extraction of oxygen and lithium
atoms (Fig. S4) [30]. The discharge capacities of LNCMO@S at 0.1, 0.2,
0.5, 1, 2, 5 and 10 C are 268.9, 254.2, 242.3, 233, 221.5, 197.3 and
174.8mA h g−1 (Figs. 2b and S5a), respectively, much higher than the
corresponding capacities (254.8, 234.9, 216.3, 199, 184.2, 157.7 and
133.3mA h g−1) of bare LNCMO at the same rates (Figs. 2b and S5c). As
shown in Fig. 2b, when the rate falls back to 0.5 C, LNCMO@S and bare
LNCMO recovered their capacity completely, indicating the great
structure stability. Fig. 2c, S5b and S5d show the cycle performance for
LNCMO@S and bare LNCMO at 0.5 C. After even 600 cycles, LNCMO@
S still exhibits a discharge capacity of ~180mA h g−1 with a capacity
retention of 81.10%, significantly higher than that of LNCMO (65.78%)
after only 200 cycles. Besides, LNCMO@S shows a voltage decay of
0.452 V after 200 cycles, much lower than that of LNCMO (0.674 V)
(Fig. S6). LNCMO@S shows a capacity retention of 97.7% and 92.5% at
higher current densities (2 C and 5 C) after 100 cycles, respectively,
much better than that of LNCMO (78.8% and 75.8%) (Fig. S7). In Fig.
S8 and Table S1, we listed and compared the rate and cycle perfor-
mance of the state of the art LLOs in previous works with this work
[16,31–39]. It is clear that the electrochemical performance of
LNCMO@S is among the best performance for all Li-rich cathode ma-
terials [16,31–39].

Electrochemical impedance spectra (EIS) were measured to explore
influence of sulfur doping on the internal impedance and Li ion con-
ductivity of LNCMO@S. Nyquist plots of LNCMO and LNCMO@S
electrodes are compared before charging and after 20 and 50 cycles at
0.5 C (Fig. 2d). The plots of LNCMO and LNCMO@S consist of a
semicircle in the intermediate-frequency region and a sloped straight
line in the low-frequency region. The semicircle in the intermediate-
frequency region is correlated with the charge-transfer (Rct) process,
and the straight line in the low-frequency region is related to the solid-
state diffusion (Warburg impedance, Zw) of Li ions in the active mate-
rials [18,34]. The simulated results and equivalent circuits are shown in
Fig. S9. Before cycling, the Rct values of both LNCMO and LNCMO@S
electrode are similar and around 115Ω. After 20 cycles, the Rct Value of
both LNCMO and LNCMO@S decreased to a low extent, which could
result from the electrochemical activation process [40,41]. The Rct

value of LNCMO@S (45.82Ω) is lower than that of bare LNCMO
(77.52 Ω) after 20 cycles and the difference is more obvious at 50th
cycle (48.89 and 110.04 Ω for LNCMO@S and bare LNCMO, respec-
tively). This means much more stable surface structure and suppressed

Fig. 1. The schematic diagram of the gaseous sulfur treatment for LLOs.
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side reactions for LNCMO@S. In addition, the lithium ion diffusion
coefficient (DLi) of all samples are calculated from the inclined line in
the low-frequency region based on the previous work (Fig. S10) [42].
The results shows that the DLi values of LNCMO@S are
2.74–3.13*10−15 cm2 s−1 during cycling, about four times of that of
bare LNCMO (6.49–8.59*10−16 cm2 s−1) (Fig. 2e). These results agree
well with the that of excellent rate performance (Fig. 2b).

To understand the effect of sulfur doping on LNCMO and explore the
origin of excellent battery performance, the XRD, XPS, TEM, and EDS
characterizations were carried out. The TEM images shows crystallite

size is about 50–80 nm and the (003) lattice plane space is about
0.47 nm accorded with the previous work (Fig. S11) [43]. The results of
EDS mapping shows that the sulfur distribute uniformly at the surface
of LNCMO@S (Fig. S12).The XRD results shown in Fig. 3a indicate that
both LNCMO@S and the reference bare LNCMO exhibit the same dif-
fraction peaks and patterns in agreement with literatures, [43,44] in-
dicating that the main crystal structure after sulfur modification re-
mains unchanged. The unit cell parameters (a and c) of LNCMO@S
slightly increases compared to that of bare LNCMO (Fig. 3a and b and
S13) and the oxygen occupation decreases to a lower extent after sulfur

Fig. 2. (a) The initial charge/discharge curve, (b) the high rate and (c) long cycle performance of LNCMO and LNCMO@S based on at least two coin cells. (d) EIS
plots and (e) lithium ion diffusion coefficient of LNCMO and LNCMO@S before cycling and after 20 and 50 cycles.

Fig. 3. (a) XRD patterns of Li1.2Ni0.13Co0.13Mn0.54O2 with and without sulfur and (b) the refinement results of LNCMO@S. XPS spectrums of (c) S 2p, (d) Ni 2p, (e) Co
2p, (f) Mn 2p.
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doping (Table S2).
The XPS measurements were conducted for both LNCMO@S and

bare LNCMO to study the variation of bond energy after sulfur doping
(Fig. 3c–f). In the XPS spectrum of S 2p (Fig. 3c), the peaks in
160–164 eV region are contributed to the S-Metal bonds [45,46,47] and
the peaks in the higher bond energy region (166–171 eV) are ascribed
to the S–O bonds from sulfate species, indicating clearly partial re-
placement of O by S atoms [47,48]. For the XPS data related to the
metal ions, LNCMO@S shifts to lower bond energy region (854.3,
779.7, and 641.8 eV for Ni 2p3/2, Co 2p3/2 and Mn 2p3/2, respectively)
compared with that (855.1, 780.5 and 642.3 eV, respectively) for the
reference bare LNCMO, supporting the partial replacement of O by S.
The sulfur content in LNCMO@S is estimated at ~0.77 at% based on the
XPS results.

Based on the results of XRD (Fig. 3a and b) and XPS (Fig. 3c–f), it
can be concluded that gaseous sulfur reacted with LNCMO at its surface
and underwent a disproportionate reaction (Fig. 4). Part of sulfur atoms
were reduced and occupied the oxygen sites, inducing the increment of
unit cell parameters (Fig. 3a) [49]. The rest reacted with the oxygen
and lithium atoms extracted from LNCMO, forming sulfate species in-
situ accompanied by the appearance of oxygen vacancies at the surface
region. These results agree well with the reduction of oxygen occupa-
tion after sulfur doping (Table S2).

The enhanced cycle performance is contributed to the suppressed
oxygen evolution and transition metal migration after gaseous sulfur
treatment, supported by the much lower voltage decay after gaseous
sulfur treatment (Fig. S6) [50,51]. The excellent rate performance
would result from the S replacement of O atoms at the surface region of
LLOs. It is well known that LLOs own well layered structure with both

lithium layer and transition metal layer [34,52] and both transition
metal and lithium ions occupy the octahedral sites consisted of oxygen
atoms (Fig. 5a). In lithium layers, lithium ions hop between octahedral
sites and tetrahedral sites to realize the Li migration (Fig. 5b) [53].
When some oxygen atoms are replaced with the sulfur atoms, it is ex-
pected that the migration energy barrier of lithium ions would decrease
due to the weaker Li–S bonds. To verify this point, the first-principles
calculations were carried out to compare the energy of the migration
path (Fig. 5b) of LLO and LLO@S. It is shown that the migration energy
barriers of Li ions in the LLO@S (0.53 eV) is much lower than that of
LLO (0.71 eV) in Fig. 5c. These results agree well with that of the bat-
tery test (Fig. 2b) and EIS (Fig. 2e).

At last, the facile gaseous sulfur treatment is extended to other re-
presentative Li-rich and Ni-rich materials such as Li1.2Ni0.2Mn0.6O2

(LNMO) and LiNi0.8Co0.1Mn0.1O2 (NCM811). As shown in Figs. S12 and
S13, the obtained LNMO@S retains a discharge capacity of
215mA h g−1 after 150 cycles at 0.5 C with an excellent capacity re-
tention of 98.2% (Fig. S12a). In contrast, bare LNMO only has a dis-
charge capacity of 192.5mA h g−1 with a capacity retention of 94.6%
after 150 cycles (Figs. S14a and S15). In addition, the rate performance
of LNMO@S is also significantly better than that of LNMO, with the
reversible capacity of 196.6mA h g−1 compared with 177.9mA h g−1

at 2 C (Fig. S14b). Similarly, both the cycling and rate performance of
NCM811 were improved after gaseous sulfur treatment as shown in
Figure S14c, S14d and S14e. The structure of NCM811 and NCM811@S
is studied by XRD and there is no clear difference between them,
meaning the unchanged structure after sulfur treatment (Fig. S16). The
enhanced electrochemical performance of NCM811@S is contributed to
the suppressed Li/Ni mixing during cycling caused by the doped sulfur

Fig. 4. The partial O replacement doped by S in the lattice of LNCMO.

Fig. 5. (a) The layered structure of LLOs. (b) The schematic diagram of lithium ion migration path in the lattice of LLOs and (c) The migration energy barrier from the
octahedral site to another one based on the first principle calculations.
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atoms [26,54]. These results indicate that the facile gaseous sulfur
strategy might be a general approach to realize the sulfur doping and/
or enhance the ion conductivity for other transition oxides materials,
such as Na ion batteries cathode materials NaxMO2 (M=Ni, Co, Mn
and so on) [55] and solid-state electrolyte Li7La3Zr2O12 [56].

In summary, a facile gaseous sulfur strategy is demonstrated to
address the challenging limited rate and cycling issues of Li- and Ni-rich
cathode materials caused mainly by oxygen evolution. When applied
for the most representative such materials, their rate and cycling per-
formance are all significantly improved. The obtained LNCMO@S
shows a high rate performance of 174.8mA h g−1 at 10 C and an ex-
cellent capacity retention of 81.10% after 600 cycles at 0.5 C. The re-
vealed mechanism, where the partial replacement of O by S at the
lattice surface significantly inhibit oxygen evolution and enhance the Li
ion conductivity, is expected to be applied for other cathode materials
and solid state electrolyte due to the facile, scalable and inexpensive
approach to achieve high energy and power density.
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