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A B S T R A C T   

Organic electrode materials are promising for future rechargeable batteries owing to their potential high ca-
pacity, tunable structure, flexibility and sustainability. Thus, developing high-performance all-organic batteries 
is highly demanded. But so far it is still a great challenge to achieve simultaneously such desired capacities and 
cycling stability, particularly for the case of all-organic symmetric batteries. Here, we design and report a 
polymer, named Poly-BQ1, which can be used as both cathode and anode materials for high-performance all- 
organic symmetric Lithium-ion battery. Such a two-fold electrode material was designed and optimized by 
balancing/maximizing abundant cathode-active groups (C˭O, C˭N) and anode-active groups (C˭C) in one stable 
conjugated polymer for both the purposes of achieving high capacity and cycling stability. Thus, owing to 
optimized integration of redox-active C˭O, C˭N and C˭C groups in a stable conjugated backbone and minimized 
redox-inactive units, the all-organic battery using this single material exhibits the highest capacity 
(351.5 mA h g− 1 at 50 mA g− 1) among all previously reported all-organic batteries with also remarkable cycling 
stability (99.96% retention per cycle up to 400 cycles) and rate performance (203.4 mA h g− 1 at 1 A g− 1).   

1. Introduction 

Rechargeable lithium-ion batteries (LIBs) have been used widely in 
many areas for the past decades [1–4]. Conventional LIBs usually use 
lithium transition metal oxides (such as LiMn2O4 and LiCoO2) as the 
cathode material and graphite as the anode material. But there have 
been some serious issues including low capacities, scarce resources, 
toxicity and energetically expensive fabrications [5]. In contrast to 
metal-containing inorganic materials, organic electrode materials are 
endowed with various merits, such as mainly consisting of naturally 
abundant and light elements (C, H, O, N, S), less energy input for syn-
thesizing such materials and truly intrinsic flexibility required for inte-
grated devices. Together with their high chemically structural diversity 
and potential reusability, it’s possible to design eco-friendly organic 
battery materials with high theoretical gravimetric capacities, energy 
densities and intrinsic flexibility [6,7]. 

Though there have been many studies for using organic materials as 
a single electrode material (cathode or anode) [8–13], it is believed 
much better to use the same material as both cathode and anode ma-
terials simultaneously to construct an all-organic symmetric battery 
[14–16]. But this is clearly more challenging as such one material needs 
to consider and balance many factors all together, including potentials, 
capacities and cycling stability of both electrodes. Furthermore, these 
should be above that all the cathode-active and anode-active groups 
need to be merged into one stable structure for long cycling capability 
together with minimum redox-inactive units. All-organic batteries by 
using organic small molecules with abundant redox-active groups as 
both cathode and anode materials show high capacities (＞ 
200 mA h g− 1) but short cycle life (≤ 200 cycles) due to the unwanted 
dissolution of active materials in the aprotic electrolytes [14–16]. On the 
contrary, all-organic batteries based on polymers usually display 
improved cycling stability (＞200 cycles) because of the stable 
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backbones of polymers, but most of them come with the sacrifice of 
capacities due to too much loading of redox-inactive units in the struc-
tures (＜150 mA h g− 1) [17–20]. These reveal the imbalance between 
high capacities and good cycling stability of current all-organic sym-
metric batteries. Another issue for polymer-based all-organic symmetric 
batteries is that their cathode materials generally have lower capacities 
than that of anode materials [20–22]. Thus, delicate and balanced 
consideration is needed to design such all-organic symmetric batteries 
materials with both high capacities and cycling life. 

To solve these problems and design an all-organic symmetric batte-
ries material with simultaneously high capacities and good cycling sta-
bility, it is crucial to merge maximum redox-active groups with high and 
low redox potentials and minimum redox-inactive units into one stable 
backbone of polymer and use it as both cathode and anode materials. 
Organic materials with C˭O or C˭N groups (as in quinones, anhydrides, 
Schiff bases and heteroaromatic compounds) show relatively high redox 
potentials (＞2.0 V vs Li/Li+) and high specific capacities, so they are 
promising active cathode materials for all-organic symmetric batteries 
[23–25]. Unsaturated organic compounds containing C˭C groups (as in 
benzene ring) display relatively low redox potentials (＜1.0 V vs Li/Li+) 
and high specific capacities, and they are good choice of active anode 
materials for all-organic symmetric batteries [26,27]. Ladder polymers 
possessing stable backbones have been used as active electrode mate-
rials with remarkable cycling stability and rate performance [28–30]. 
There have been reports that cathode-active C˭N linkages and stable 
backbones of polymers can form through direct condensation reaction 
between reactants containing aminos and carbonyls, which can also 
improve capacities and cycling stability of all-organic symmetric bat-
teries synergistically [8,29,31,32]. Thus, it would be possible by maxi-
mizing cathode-active and anode-active groups (C˭O, C˭N and C˭C) and 
minimizing redox-inactive units and merging them into one stable lad-
der polymer to obtain high-performance all-organic symmetric batteries 
with balanced potentials, high capacities and long cycling stability of 
both cathode and anode. 

With this in mind, we design and report such a ladder polymer 
named Poly-BQ1, which can be made by a simple condensation reaction 
between two commercial compounds, namely 2,3,5,6-tetramino-1,4- 
benzoquinone (TABQ) and 2,5-dihydroxy-1,4-benzoquinone (DHBQ), 
with the aim of maximizing balanced cathode-active (C˭O and C˭N) and 

anode-active groups (C˭C) and minimizing redox-inactive units in a 
stable ladder polymer backbone. Owing to abundant redox-active C˭O, 
C˭N and C˭C groups, the constructed all-organic symmetric battery by 
using Poly-BQ1 as both cathode and anode materials exhibits the highest 
capacity of 351.5 mA h g− 1 at 50 mA g− 1 among all the previous all- 
organic batteries (Table S1). It also shows superior rate capacity of 
203.4 mA h g− 1 at 1 A g− 1 and remarkable cycling stability up to 400 
cycles with a capacity retention of 99.96% per cycle. Noticeably, the 
electrochemical performance of our flexible all-organic battery keeps 
almost unchanged under a wide range of bending states (0–180◦), which 
shows good flexibility of our battery. 

2. Results and discussion 

Poly-BQ1 is prepared by a simple condensation reaction between 
TABQ and DHBQ (Fig. 1a), and the detailed synthesis process is shown in 
Section S2 of the Supporting Information. Fig. 1b displays the solid state 
13C NMR spectrum of Poly-BQ1, in which the peaks at 174 and 146 ppm 
are contributions from carbon atoms of cathode-active C˭O and C˭N 
bonds, respectively (1 and 2 in orange color in Fig. 1a and 1b). The shift 
values at 142, 134, 130 and 108 ppm are ascribed to carbon atoms of 
anode-active C˭C bonds at different chemical environments (3–6 in or-
ange color in Fig. 1a and 1b) [10,31]. Note due to the fact that the 13C 
NMR spectrum is recorded in solid state and also the large conjugated 
system of Poly-BQ1, their/some peaks could be weak/broad as observed 
in many literatures [10,33–35]. Peaks of C˭O (1626 cm− 1) and C˭N 
(1545 cm− 1) groups of Poly-BQ1 can be observed in the FT-IR spectra 
(Fig. S1) [10,31]. The high-resolution X-ray photoelectron spectroscopy 
(XPS) spectra of C1s, N1s and O1s of Poly-BQ1 exhibit the deconvoluted 
peaks of redox-active C˭O, C˭N and C˭C groups (Fig. S2) [10,35]. The 
energy dispersive spectroscopy (EDS) mapping images show that car-
bon, nitrogen and oxygen are homogeneously distributed throughout 
(Fig. S4). The thermogravimetric analysis (TGA) shows no significant 
weight loss (2%) before 300 ℃, and 60% of its weight still maintains up 
to 703 ℃ in N2 (Fig. 1c), revealing the formation of the polymer 
structure and its outstanding thermal stability. Peaks of G band 
(1513 cm− 1) and D band (1375 cm− 1) can be observed from the Raman 
spectroscopy of Poly-BQ1 (Fig. S5) [10,36]. These characterizations of 
Poly-BQ1 indicate that cathode-active C˭O and C˭N groups and 

Fig. 1. Synthesis and structural characterizations of Poly-BQ1. (a) The synthesis route of Poly-BQ1. (b) The solid state 13C NMR spectrum of Poly-BQ1. (c) The TGA 
characterization of reactants and products. 
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anode-active C˭C groups are successfully merged into the stable back-
bone of Poly-BQ1. 

The electrochemical performance was investigated by using half- 
cells with lithium metal as the reference electrode. Poly-BQ1 was first 
evaluated as active cathode material in the optimized relatively high 
potential window of 1.2–3.6 V (vs Li/Li+). In the cyclic voltammetry 
(CV) curves of cathode half cell (Fig. 2a), redox peaks at 2.62, 2.74 and 
3.04 V (vs Li/Li+) are contributions from C˭O groups, peaks at 2.24 and 
2.40 V (vs Li/Li+) are ascribed to C˭N groups, respectively [10,31]. The 
galvanostatic charge/discharge profiles of Poly-BQ1 cathode half-cell 
show slopes corresponding to the peaks of CV curves (Fig. 2b), 
revealing that C˭O and C˭N are cathode-active groups as expected. The 
CV curves and charge/discharge curves overlap well during the 2–3 
cycles, confirming good stability and reversibility of the cathode 
half-cell. A high initial discharge capacity of 427.5 mA h g− 1 (94.1% of 
its theoretical capacity) can be obtained at 50 mA g− 1, which is higher 
than the capacities of most previous organic cathode materials (Fig. S9, 
Table S2) [37,38]. The Poly-BQ1 cathode half-cell maintains reversible 
capacity of 268.9 mA h g− 1 at 100 mA g− 1 after 100 cycles with a ca-
pacity retention of 78.6% (Fig. 2c). Even at a large current density of 
500 mA g− 1, it remains a discharge capacity of 182.6 mA h g− 1 after 
1500 cycles with an average capacity loss of only 0.028% per cycle 
(Fig. 2e). Some capacity decay during the early stage of cycling may be 
caused by some irreversible side reactions and the formation of SEI 
layers [12]. The Coulombic efficiency (CE) of neat unity can be 

maintained throughout the cycling under different current densities, 
revealing remarkable cycling stability. After activation under 
50 mA g− 1, it displays reversible capacities of 360.5, 359.1, 333.3 and 
322.8 mA h g− 1 at current densities of 100, 200, 500 and 1000 mA g− 1, 
respectively (Fig. 2d). A high capacity recovers when the current density 
is reduced after the back-and-forth large current densities, indicating its 
superior rate performance. The energy density of Poly-BQ1 cathode 
half-cell is estimated to be 301.0 W h kg− 1 (Section S5, Fig. S10), which 
is much higher than that of conventional LIBs based on inorganic 
cathode materials (100–140 W h kg− 1) [31,39]. These results suggest 
that Poly-BQ1 is a promising active cathode material for all-organic 
symmetric batteries with high capacity and cycling stability 
simultaneously. 

Based on previous studies [10,31] two-step redox processes of 
Poly-BQ1 were proposed in the relatively high potential range of 
1.2–3.6 V (vs Li/Li+) (Fig. 3a). This was supported by density functional 
theory (DFT) calculations for the optimized structures at different stages 
of lithiation (Section S6, Supporting Information). Simulation studies 
are carried out on oligomer of Poly-BQ1 (n = 3), 3BQ1 for short, the 
edges of which are saturated with hydrogen atoms, and the optimized 
structures of 3BQ1-xLi (x = 0, 6, 12) are shown in Fig. 3b. The optimized 
result of 3BQ1–6Li reveals that every Li+ coordinates with oxygen atom 
and the adjacent nitrogen atom to form a five-membered ring 
(C–O–Li–N–C) during the lithiation process of the C˭O groups [31,40]. 
The optimized structure of 3BQ1–12Li indicates that another six 

Fig. 2. Electrochemical performance of 
Poly-BQ1 cathode half-cell between 1.2 
and 3.6 V (vs Li/Li+), the electrolyte is 
1 M LiTFSI in the mixed solvent of DOL 
and DME (1:1, v/v). (a) Cyclic voltam-
metry (CV) curves at a scan rate of 
0.1 mV s− 1 in the initial 3 cycles. (b) 
Capacity-voltage profiles at 50 mA g− 1 

in the initial 3 cycles. (c) Cycling per-
formance at 100 mA g− 1 for 100 cycles. 
(d) Rate capacities at current densities 
of 100, 200, 500, 1000 mA g− 1. (e) 
Long-term cycling performance at 
500 mA g− 1 for 1500 cycles.   
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five-membered rings (C–O–Li–N–C) could form during the reaction be-
tween C˭N groups and additional six Li+, and each ring shares the same 
C, N and O atoms with one ring formed in advance [10,41]. Such evo-
lutions of optimized structures support the two-step lithiation processes 
of Poly-BQ1 cathode half-cell. 

With the aim to further confirm the lithium storage mechanism of 
Poly-BQ1 between 1.2 and 3.6 V (vs Li/Li+), the discharge/charge pro-
cesses were in situ monitored by attenuated total reflection infrared 
spectroscopy (ATR-IR) (Fig. S12). The absorption peaks situated at 1623 
and 1535 cm− 1 can be assigned to C˭O and C˭N groups, respectively. 
Their intensities also gradually decrease with discharging and gradually 
increase with charging, corresponding to the intercalation/dein-
tercalation of Li+ into/from the cathode-active C˭O and C˭N bonds of 
Poly-BQ1 (Fig. 3c) [10,42]. Note that the observed reversible changes of 
the ATR-IR spectra also illustrate the good reversibility and stability of 
Poly-BQ1 cathode half-cell. 

The electrochemical tests were then performed within the relatively 
low potential window of 0.01–3.0 V (vs Li/Li+) by using Poly-BQ1 as an 
active anode material. Fig. 4a proposes the lithiation/delithiation 

processes of Poly-BQ1 anode half-cell, in which Li+ combine with C˭O 
and C˭N groups and then C˭C groups [28,29]. As expected, the peaks of 
the CV profiles of anode half-cell are similar to that of cathode half-cell 
in the potential range of 1.2–3.0 V (vs Li/Li+), corresponding to the 
redox reactions between Li+ and C˭O and C˭N groups. In the lower 
potential range of 0.01–1.2 V (vs Li/Li+), a pair of new broad redox peak 
appears, which can be ascribed to the redox reaction between Li+ and 
the anode-active C˭C bonds of aromatic rings (Fig. S13a) [28,29]. A 
reversible discharge capacity of 1143.4 mA h g− 1 can be observed from 
the charge/discharge curves (Fig. S13b), of which a capacity of 
232.2 mA h g− 1 is the contribution from Super P (Fig. S14b). It can be 
calculated that ~8 Li+ can reversibly insert into each repeating unit of 
Poly-BQ1 anode material, corresponding to 50% of its theoretical ca-
pacity (Section S7, Supporting Information). It shows high capacities 
and good cycling stability up to hundreds of cycles under different 
current densities (Fig. 4b, Fig. S15). The observed gradual/slight ca-
pacity increase with cycling as shown in Fig. 4b is believed due to the 
electrochemical activation process as reported for many organic battery 
materials [33,43]. Notably, high reversible capacities of 1898.6 and 

Fig. 3. Reaction mechanism of Poly-BQ1 cathode half-cell between 1.2 and 3.6 V (vs Li/Li+). (a) The structural evolutions of active sites of Poly-BQ1 cathode half- 
cell during lithiation/delithiation processes. (b) The schematic diagram of two-step lithiation/delithiation processes of 3BQ1 obtained via the DFT calculations. (c) 
Charge/discharge profiles at 50 mA g− 1 and the in situ ATR-IR spectra collected during the first cycle. 
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1716.7 mA h g− 1 can be obtained when cycling under 60 ℃ at 500 and 
1000 mA g− 1, respectively, which are close to its theoretical capacity 
(Fig. S16 and S17). The anode half-cell shows capacity of 
623.1 mA h g− 1 (~24% is contribution from Super P) under large cur-
rent density of 1 A g− 1, which suggests good rate performance (Fig. 4c). 
The superior electrochemical performance of anode half-cell in the 
relatively low potential range indicates that Poly-BQ1 is also a good 
candidate for active anode material of all-organic symmetric batteries 
with simultaneously high capacities and cycling stability. 

In situ Raman spectra were collected to study the intercalation/ 
deintercalation of Li+ into/ from the Poly-BQ1 anode material when 
cycling (Fig. S19). In the range of G band (1500–1630), the weak peak at 
1615 cm− 1 attributes to the C˭O groups, and the broad band from 1510 
to 1600 cm− 1 attributes to the C˭N and C˭C groups of redox-active ar-
omatic rings in backbone of Poly-BQ1 [44,45]. The broad band from 
1280 to 1400 cm− 1 can be assigned to the disordered carbon (D band) of 
poly-BQ1 (Fig. 4d). The peaks of C˭O, C˭N and C˭C groups gradually 
weaken during the discharge process, while the band of disordered 
carbon gradually enhances due to the increased amount of sp3 carbon 
atoms, which indicates the intercalation of Li+ into C˭O, C˭N and C˭C 
bonds and the reduction of these unsaturated bonds. The changes of 
these peaks are opposite during the following charge process, indicating 
the deintercalation of Li+ from C˭O, C˭N and C˭C bonds, which reveal 
good reversibility and stability of Poly-BQ1 anode half-cell. To further 
confirm the chemical bonding states and composition changes of the 
Poly-BQ1 anode material, ex situ C1s XPS spectra were collected at 
different stages of lithiation processes during the first cycle. The 
reversible changes between C˭C and C-C bonds along with the reversible 
formation of C-Li bonds can be observed, which indicates the reversible 
insertion of Li+ into aromatic rings. These results also suggest that C˭O, 

C˭N and C˭C bonds undergo reversible redox processes between 0.01 
and 3.0 V (vs Li/Li+) (Fig. S20). 

In theory, four and twelve Li+ can be stored in each repeating unit of 
Poly-BQ1 in the potential ranges of 1.2–3.6 and 0.01–1.2 V (vs Li/Li+), 
respectively. Four Li+ can combine with C˭O and C˭N groups, and four 
Li+ can combine with C˭C groups in our experiments. With this two-fold 
property, Poly-BQ1 at different redox states was thus used as both 
cathode material and anode material (prelithiated) to fabricate an all- 
organic symmetric battery. The cathode-active C˭O and C˭N bonds of 
cathode material uptake four Li+, while the anode-active lithiated car-
bon atoms of anode material release four Li+ when discharging, and the 
opposite processes take place while charging (Fig. 5a). The full cell 
displays an open circuit voltage of ~2.3 V and an average work voltage 
of ~1.4 V. Compared to the cathode half-cell (Fig. 2a and 2b), the po-
sitions of redox peaks and voltage plateaus are ~1 V lower (Fig. S21 and 
S22), corresponding to the redox potential of the C˭C groups of the 
anode (Fig. S13). These results indicate that the proposed reaction 
processes of symmetric full cell based on Poly-BQ1 are reasonable. 

The all-organic symmetric battery exhibits superb electrochemical 
performance with the highest capacity of 351.5 mA h g− 1 at 50 mA g− 1 

among all the previously reported all-organic batteries (Fig. S23, 
Table S1). It also displays remarkable cycling stability at 500 mA g− 1 for 
400 cycles with an average capacity loss of 0.038% per cycle (Fig. 5b). 
After activation at 50 mA g− 1, it delivers high capacities of 277.3, 253.8, 
227.6 and 203.4 mA h g− 1 at current densities of 100, 200, 500 and 
1000 mA g− 1, respectively (Fig. 5c). As far as we are aware, these are the 
highest rate capacities among almost all the all-organic rechargeable 
batteries reported (Fig. 5d, Table S1). Our all-organic symmetric battery 
exhibits a high energy density of 147.9 W h kg− 1, which is higher than 
almost all the all-organic batteries (≤ 90 W h kg− 1) (Fig. S25) [46,47]. 

Fig. 4. Electrochemical performance of Poly-BQ1 anode half-cell between 0.01 and 3.0 V (vs. Li/Li+), the electrolyte is 1 M LiPF6 in the mixed solvent of EC and DEC 
(1:1, v/v). (a) The proposed electrochemical redox reaction processes. (b) Cycling performance. (c) Rate capacities at current densities of 100, 200, 500 and 
1000 mA g− 1 after activation under 50 mA g− 1. (d) Charge/discharge profiles at 50 mA g− 1 and the in situ Raman spectra collected during 2 cycles. 
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These results indicate that Poly-BQ1 is a promising candidate for both 
cathode and anode materials of high-performance all-organic symmetric 
batteries. 

Organic materials possess an advantage of intrinsically flexible, and 
thus we fabricated an all-organic symmetric pouch cell with aluminum 
plastic packing film. The charge/discharge curves of the pouch cell in 
the voltage range of 0.1–2.95 V under flat (0◦) and bending (180◦) states 
show discharge capacities of ~280 mA h g− 1 without obvious decay 
(Fig. 5e), which verifies the flexibility and high capacity of Poly-BQ1. 
Fig. S26 and S27 show the cycling performance under different 
bending states. The flexible symmetric pouch cell based on Poly-BQ1 can 
successfully power a red light-emitting diode (LED) continuously from 
0◦ to 180◦ with constant brightness (inset of Fig. 5e, Movie S1). The 
flexible all-organic symmetric pouch cell can supply power steadily and 
is promising for flexible wearable devices. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2021.106055. 

3. Conclusion 

In conclusion, we designed and synthesized a stable ladder polymer 
with high performance by merging minimum redox-inactive units and 
maximum cathode-active and anode-active groups into one stable ladder 
backbone and used it as both cathode and anode materials for all- 
organic symmetric battery. By balancing multiple optimized redox- 
active groups in the stable ladder backbone of Poly-BQ1, the all- 

organic symmetric battery displays the highest capacity 
(351.5 mA h g− 1 at 50 mA g− 1) among all the previous all-organic bat-
teries, together with a remarkable cycling stability (capacity retention of 
99.96% per cycle for 400 cycles), superior rate performance 
(203.4 mA h g− 1 at 1 A g− 1) and high flexibility. The results suggest that 
our strategy offers a possible approach for designing and synthesizing 
flexible next-generation all-organic symmetric batteries materials with 
both high capacities and cycling stability simultaneously. 
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